rm: descend into directory ‘flink-1.17.0’?

时间: 2024-02-23 16:02:30 浏览: 224
这个提示是`rm`命令在删除一个目录时询问是否需要进入该目录进行递归删除。如果你想删除该目录及其下所有文件和子目录,请输入`y`或者`yes`并按回车键确认操作。如果你不想删除该目录,请输入`n`或者`no`并按回车键取消操作。如果你想在不询问的情况下直接递归删除该目录,可以使用`-f`选项强制删除,例如: ``` rm -rf flink-1.17.0 ``` 请注意,强制删除操作是不可逆的,请谨慎操作。在删除任何文件或目录之前,请确保你已经备份了重要数据。
相关问题

while(length(p)>2) tempsum=p(length(p))+p(length(p)-1); sumarray=[sumarray,tempsum]; p=[p(1:length(p)-2),tempsum]; p=sort(p,'descend'); i=i+1; b(i,:)=[p,zeros(1,w-length(p))]; w1=0; lengthp=[lengthp,length(p)];逐行注释

好的,以下是逐行注释: ``` while(length(p)>2) % 当概率数组p中的元素个数大于2时,执行下面的代码。 tempsum=p(length(p))+p(length(p)-1); % 将概率数组p中最后两个元素的概率相加,得到一个新的概率值,即两节点合并后的概率值。 sumarray=[sumarray,tempsum]; % 将新的概率值添加到sumarray数组中,用于记录每次合并节点后的概率值。 p=[p(1:length(p)-2),tempsum]; % 将概率数组p中最后两个元素删除,并将新的概率值添加到数组末尾,即完成了两个节点的合并。 p=sort(p,'descend'); % 对概率数组p进行从大到小的排序,用于下一次合并节点。 i=i+1; % 记录当前合并节点的次数。 b(i,:)=[p,zeros(1,w-length(p))]; % 将当前的概率数组p赋值给二维数组b的第i行,并在数组末尾补充0,使得每一行的长度都等于概率数组p的初始长度w。 w1=0; % 将变量w1赋值为0,用于下一次合并节点。 lengthp=[lengthp,length(p)]; % 将概率数组p的长度添加到数组lengthp中,用于记录每次合并节点后概率数组长度的变化。 end ``` 这些代码实现了霍夫曼树的构建过程,具体含义请参考前面的回答。

[A,I]=sort(y1,'descend');%频谱高到低排列,显示各次谐波。I为返回索引 序列,表示A中元素与y1中元素的对应。m=0:799; fn=(m/800).*fs; %频率C={0,0,0,0,0,0};%表示谐波数组for i=2:7 C{i-1}=A(i)/A(1)*100;%谐波畸变率 if C{i-1}>0.05*100 disp('F') else disp('T') end end

这是一段 MATLAB 代码,用于计算一个信号的频域信息,并检查其谐波畸变率是否超过了阈值。具体来说,代码首先对信号的频谱进行了高到低的排列,并返回了排列后的索引序列。然后,代码计算了信号的各次谐波的幅值,并将其存储在一个数组中。接下来,代码计算了各次谐波的畸变率,并根据阈值判断是否存在谐波畸变。如果存在谐波畸变,则输出 'F',否则输出 'T'。
阅读全文

相关推荐

为什么两个结果一模一样,该怎么改:BC1 = zeros(1,N); % 第一个网络的介数中心性 BC2 = zeros(1,N); % 第二个网络的介数中心性 for i=1:N % 计算第一个网络中的介数中心性 [dist,~,pred] = graphshortestpath(sparse(a1),i,'Directed',false); for j=1:N if i~=j && dist(j)<Inf path = j; k = j; while k~=i k = pred(k); path = [k,path]; %#ok<AGROW> end for l=1:length(path)-1 BC1(path(l)) = BC1(path(l)) + 1/dist(j); end end end end fid = fopen('node_coordinates.txt'); C = textscan(fid, 'Node %d: (%f,%f,%f)'); fclose(fid); nodes = [C{2}, C{3}, C{4}]; node_ids = C{1}; node_pos = nodes(:,1:2); [BC1_sorted, BC1_idx] = sort(BC1, 'descend'); % 将介数中心性从高到低排序并记录排序后的索引 top5_idx = BC1_idx(1:5); % 取前5个节点的索引 for i = 1:5 node_id = idx(top5_idx(i)); % 使用排序后的索引来获取节点编号 node_bc = BC1(node_id); node_x = node_pos(top5_idx(i), 1); % 使用未排序的索引来获取节点坐标 node_y = node_pos(top5_idx(i), 2); fprintf('节点 %d,介数中心性为 %f,坐标为 (%f,%f)\n', node_id, node_bc, node_x, node_y); end for i=1:N % 计算第二个网络中的介数中心性 [dist,~,pred] = graphshortestpath(sparse(a2),i,'Directed',false); for j=1:N if i~=j && dist(j)<Inf path = j; k = j; while k~=i k = pred(k); path = [k,path]; %#ok<AGROW> end for l=1:length(path)-1 BC2(path(l)) = BC2(path(l)) + 1/dist(j); end end end end fid = fopen('node_coordinates2.txt'); C = textscan(fid, 'Node %d: (%f,%f,%f)'); fclose(fid); nodes = [C{2}, C{3}, C{4}]; node_ids = C{1}; node_pos = nodes(:,1:2); [BC2_sorted, BC2_idx] = sort(BC2, 'descend'); % 将介数中心性从高到低排序并记录排序后的索引 top5_idx = BC2_idx(1:5); % 取前5个节点的索引 for i = 1:5 node_id = idx(top5_idx(i)); % 使用排序后的索引来获取节点编号 node_bc = BC2(node_id); node_x = node_pos(top5_idx(i), 1); % 使用未排序的索引来获取节点坐标 node_y = node_pos(top5_idx(i), 2); fprintf('节点 %d,介数中心性为 %f,坐标为 (%f,%f)\n', node_id, node_bc, node_x, node_y); end

将下面matlab代码function [channel] = preRun(acqResults, settings)%% Initialize all channels ================================================ channel = []; % Clear, create the structure channel.PRN = 0; % PRN number of the tracked satellite channel.acquiredFreq = 0; % Used as the center frequency of the NCO channel.codePhase = 0; % Position of the C/A start channel.codeFreq = 0; % Used as the center frequency of the code NCO channel.status = '-'; % Mode/status of the tracking channel % "-" - "off" - no signal to track % "T" - Tracking state %--- Copy initial data to all channels ------------------------------------ channel = repmat(channel, 1, settings.numberOfChannels); %% Copy acquisition results =============================================== %--- Sort peaks to find strongest signals, keep the peak index information [~, PRNindexes] = sort(acqResults.peakMetric, 2, 'descend'); %--- Load information about each satellite -------------------------------- % Maximum number of initialized channels is number of detected signals, but % not more as the number of channels specified in the settings. for ii = 1:min([settings.numberOfChannels, sum(acqResults.carrFreq ~= 0)]) channel(ii).PRN = PRNindexes(ii); channel(ii).acquiredFreq = acqResults.carrFreq(PRNindexes(ii)); channel(ii).codePhase = acqResults.codePhase(PRNindexes(ii)); channel(ii).codeFreq = settings.codeFreqBasis + ... (channel(ii).acquiredFreq - settings.IF)/... settings.carrFreqBasis * settings.codeFreqBasis; % Set tracking into mode (there can be more modes if needed e.g. pull-in) channel(ii).status = 'T'; end转成python

最新推荐

recommend-type

A级景区数据文件json

A级景区数据文件json
recommend-type

使用Java编写的坦克大战小游戏.zip学习资料

python 使用Java编写的坦克大战小游戏.zip学习资料
recommend-type

【python毕设】p073基于Spark的温布尔登特色赛赛事数据分析预测及算法实现_flask(5).zip

项目资源包含:可运行源码+sql文件+; python3.7+flask+spark+mysql5.7+vue 适用人群:学习不同技术领域的小白或进阶学习者;可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 项目具有较高的学习借鉴价值,也可拿来修改、二次开发。 有任何使用上的问题,欢迎随时与博主沟通,博主看到后会第一时间及时解答。 系统是一个很好的项目,结合了后端服务(flask)和前端用户界面(Vue.js)技术,实现了前后端分离。 后台路径地址:localhost:8080/项目名称/admin/dist/index.html 前台路径地址:localhost:8080/项目名称/front/index.html
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自