max_steps = 64 features = torch.zeros((T - tau - max_steps + 1, tau + max_steps)) # 列i(i<tau)是来自x的观测,其时间步从(i)到(i+T-tau-max_steps+1) for i in range(tau): features[:, i] = x[i: i + T - tau - max_steps + 1]

时间: 2024-03-19 15:41:45 浏览: 99
这段代码是在构建一个特征矩阵,其中列i(i<tau)是来自x的观测,其时间步从(i)到(i+T-tau-max_steps+1),而列i(i>=tau)是来自(i-tau+1)步的预测,其时间步从(i)到(i+T-tau-max_steps+1)。具体来说,这段代码通过循环遍历tau个时间步,将每个时间步对应的观测数据和预测数据分别填充到特征矩阵的相应位置上,最终得到一个大小为(T-tau-max_steps+1)×(tau+max_steps)的特征矩阵。其中,tau表示观测数据的时间步长,T表示序列的总时间步长,max_steps表示预测的步数。这段代码适用于序列预测问题,可以将序列分成观测部分和预测部分,通过构建特征矩阵,将序列转化为机器学习中常用的输入输出形式。
相关问题

# 比较对于预测多步的困难程度 max_steps = 64 features = torch.zeros((T - tau - max_steps + 1, tau + max_steps)) # 列i(i<tau)是来自x的观测,其时间步从(i)到(i+T-tau-max_steps+1) for i in range(tau): features[:, i] = x[i: i + T - tau - max_steps + 1] # 列i(i>=tau)是来自(i-tau+1)步的预测,

对于预测多步的困难程度取决于多个因素,如数据的稳定性、序列的长度、模型的准确性等等。在上述代码中,我们可以看到特征中的列i(i>=tau)是来自(i-tau+1)步的预测,这意味着我们需要对多个步骤进行预测,这可能会增加预测的难度。另外,如果数据不够稳定,可能会导致预测结果的不准确性,使预测更加困难。此外,序列的长度也可能会影响预测的难度,较长的序列可能更难预测。最后,模型的准确性也是预测多步的重要因素之一,准确性越高,预测多步就越容易。

举个详细的例子,max_steps = 64 features = torch.zeros((T - tau - max_steps + 1, tau + max_steps)) # 列i(i<tau)是来自x的观测,其时间步从(i)到(i+T-tau-max_steps+1) for i in range(tau): features[:, i] = x[i: i + T - tau - max_steps + 1] # 列i(i>=tau)是来自(i-tau+1)步的预测,其时间步从(i)到(i+T-tau-max_steps+1) for i in range(tau, tau + max_steps): features[:, i] = net(features[:, i - tau:i]).reshape(-1) steps = (1, 4, 16, 64) d2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps], [features[:, tau + i - 1].detach().numpy() for i in steps], 'time', 'x', legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000], figsize=(6, 3))

好的,让我来举个详细的例子。 假设我们有一个长度为T的时间序列,其中包含了一些观测数据和一些需要预测的数据。我们希望使用一个神经网络模型来对未来的max_steps步进行预测,并且我们希望可视化预测结果。 首先,我们需要将序列分成观测部分和预测部分。我们可以选择一个观测数据的时间步长tau,然后从序列的第1个时间步开始,每个tau个时间步选择一个观测数据点,构建出一个特征矩阵。具体来说,我们可以使用以下代码: ```python max_steps = 64 features = torch.zeros((T - tau - max_steps + 1, tau + max_steps)) for i in range(tau): features[:, i] = x[i: i + T - tau - max_steps + 1] for i in range(tau, tau + max_steps): features[:, i] = net(features[:, i - tau:i]).reshape(-1) ``` 这段代码首先创建了一个大小为(T-tau-max_steps+1)×(tau+max_steps)的特征矩阵,其中包含了观测数据和预测数据。然后,通过循环遍历tau个时间步,将每个时间步对应的观测数据填充到特征矩阵的相应位置上。接着,从第tau步开始,循环遍历max_steps个时间步,将每个时间步对应的预测数据填充到特征矩阵的相应位置上。预测数据是通过使用预先定义的神经网络模型net,对特征矩阵中第i-tau+1步到第i步的数据进行预测得到的。 最后,我们可以使用d2l.plot函数,将不同步数的预测结果可视化出来。具体来说,我们可以使用以下代码: ```python steps = (1, 4, 16, 64) d2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps], [features[:, tau + i - 1].detach().numpy() for i in steps], 'time', 'x', legend=[f'{i}-step preds' for i in steps], xlim=[5, 1000], figsize=(6, 3)) ``` 这段代码首先定义了一个steps列表,其中包含了需要预测的步数。然后,使用d2l.plot函数将不同步数的预测结果可视化出来。具体来说,d2l.plot函数将预测结果与真实结果在时间轴上进行比较,以便观察预测结果的准确性和波动情况。其中,第一个参数是一个列表,包含了不同步数对应的时间序列,第二个参数是一个列表,包含了不同步数对应的预测结果,第三个参数是x轴的标签,第四个参数是y轴的标签,legend参数指定了图例名称,xlim参数指定了x轴的范围,figsize参数指定了图像的大小。
阅读全文

相关推荐

class ResidualBlock(nn.Module): def init(self, in_channels, out_channels, dilation): super(ResidualBlock, self).init() self.conv = nn.Sequential( nn.Conv1d(in_channels, out_channels, kernel_size=3, padding=dilation, dilation=dilation), nn.BatchNorm1d(out_channels), nn.ReLU(), nn.Conv1d(out_channels, out_channels, kernel_size=3, padding=dilation, dilation=dilation), nn.BatchNorm1d(out_channels), nn.ReLU() ) self.attention = nn.Sequential( nn.Conv1d(out_channels, out_channels, kernel_size=1), nn.Sigmoid() ) self.downsample = nn.Conv1d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else None def forward(self, x): residual = x out = self.conv(x) attention = self.attention(out) out = out * attention if self.downsample: residual = self.downsample(residual) out += residual return out class VMD_TCN(nn.Module): def init(self, input_size, output_size, n_k=1, num_channels=16, dropout=0.2): super(VMD_TCN, self).init() self.input_size = input_size self.nk = n_k if isinstance(num_channels, int): num_channels = [num_channels*(2**i) for i in range(4)] self.layers = nn.ModuleList() self.layers.append(nn.utils.weight_norm(nn.Conv1d(input_size, num_channels[0], kernel_size=1))) for i in range(len(num_channels)): dilation_size = 2 ** i in_channels = num_channels[i-1] if i > 0 else num_channels[0] out_channels = num_channels[i] self.layers.append(ResidualBlock(in_channels, out_channels, dilation_size)) self.pool = nn.AdaptiveMaxPool1d(1) self.fc = nn.Linear(num_channels[-1], output_size) self.w = nn.Sequential(nn.Conv1d(num_channels[-1], num_channels[-1], kernel_size=1), nn.Sigmoid()) # 特征融合 门控系统 # self.fc1 = nn.Linear(output_size * (n_k + 1), output_size) # 全部融合 self.fc1 = nn.Linear(output_size * 2, output_size) # 只选择其中两个融合 self.dropout = nn.Dropout(dropout) # self.weight_fc = nn.Linear(num_channels[-1] * (n_k + 1), n_k + 1) # 置信度系数,对各个结果加权平均 软投票思路 def vmd(self, x): x_imfs = [] signal = np.array(x).flatten() # flatten()必须加上 否则最后一个batch报错size不匹配! u, u_hat, omega = VMD(signal, alpha=512, tau=0, K=self.nk, DC=0, init=1, tol=1e-7) for i in range(u.shape[0]): imf = torch.tensor(u[i], dtype=torch.float32) imf = imf.reshape(-1, 1, self.input_size) x_imfs.append(imf) x_imfs.append(x) return x_imfs def forward(self, x): x_imfs = self.vmd(x) total_out = [] # for data in x_imfs: for data in [x_imfs[0], x_imfs[-1]]: out = data.transpose(1, 2) for layer in self.layers: out = layer(out) out = self.pool(out) # torch.Size([96, 56, 1]) w = self.w(out) out = w * out # torch.Size([96, 56, 1]) out = out.view(out.size(0), -1) out = self.dropout(out) out = self.fc(out) total_out.append(out) total_out = torch.cat(total_out, dim=1) # 考虑w1total_out[0]+ w2total_out[1],在第一维,权重相加得到最终结果,不用cat total_out = self.dropout(total_out) output = self.fc1(total_out) return output优化代码

最新推荐

recommend-type

一个简单的java游戏.zip

《一个简单的Java游戏.zip》是一个专为学习目的设计的Java小游戏资源包。它包含了完整的源代码和必要的资源文件,适合初学者通过实战练习提升编程技能。该项目展示了如何使用Java的图形用户界面(GUI)库创建游戏窗口,并实现基本的游戏逻辑和交互功能。该游戏项目结构清晰,包括了多个类和文件,每个部分都有详细的注释,帮助理解代码的功能和逻辑。例如,Block类用于定义游戏中的基本元素,如玩家和障碍物;CreateGame类则是游戏的主要控制类,负责初始化游戏窗口、处理用户输入以及更新游戏状态等。此外,该资源包还演示了如何绘制游戏元素、处理事件驱动编程以及多线程的应用,这些都是游戏开发中的重要概念。通过运行和修改这个小游戏,用户可以深入了解Java编程的基础知识,并培养解决实际问题的能力。总之,《一个简单的Java游戏.zip》是一个理想的学习工具,无论是对于初学者还是有一定经验的开发者来说,都可以通过这个项目获得宝贵的实践经验。
recommend-type

基于SSM的智慧中医诊所管理系统(前后端代码)

基于SSM的智慧中医诊所管理系统(前后端代码)
recommend-type

chromedriver-win64-133.0.6835.0

当前版本是133.0.6835.0 ChromeDriver 是 Selenium WebDriver 用于控制 Chrome 的独立可执行文件。此扩展程序由 Chromium 团队在 WebDriver 贡献者的帮助下进行维护。如果您不熟悉 Selenium WebDriver,则应访问 Selenium 网站。 请按以下步骤设置测试,以便与 ChromeDriver 一起运行: 确保 Chromium/Google Chrome 安装在可识别的位置 ChromeDriver 希望你将 Chrome 安装到适用于您的平台的默认位置。你还可以通过设置特殊功能强制 ChromeDriver 使用自定义位置。 在本网站的下载部分,下载适用于您平台的 ChromeDriver 二进制文件 帮助 WebDriver 找到已下载的 ChromeDriver 可执行文件
recommend-type

GM后台包站系统+码支付+代理系统+优化版管理后台+84款某站GM游戏

Linux系统,建议7.0以上 1.安装宝塔 2.安装环境,Nginx 1.14或1.6,MySQL 5.5或5.6,php 5.6以上 建议7.2 3.添加网站,上传源码到网站根目录,修改源码IP和数据库密码,system/data.php,ht/config.php 4.导入数据库文件,首页输入的你的IP或域名即可,后台输入你的IP/ht即可。
recommend-type

C#ASP.NET基于Bootstrap后台程序员工具集源码数据库 其他源码类型 WebForm

ASP.NET基于Bootstrap后台程序员工具集源码 这是一套基于.net 4.0 web + bootstrap + admin后台框架模板,界面十分的美观大方 该源码的功能介绍如下: (1)登录主页面。 (2)漂亮管理后台框架集成。 (3)http post get 测试工具。 (4)中文转全拼、简拼。 (5)微信调试工具:文本、菜单点击、关注、取消关注、图片、链接。 (6)多种加解密:Des加密、Des界面、SHA加密、MD5、SHA64等。 (7)insert 语句核对工具。 注意事项 1、开发环境为Visual Studio 2010,无数据库,使用.net 4.0开发。 2、该源码比较适合二次开发使用或者学习交流。
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。