带时间窗的节约里程法matlab
时间: 2023-08-01 12:14:15 浏览: 226
以下是一个带时间窗的节约里程法的MATLAB代码示例:
```
function [bestRoute, minDist] = vrptw_savings(nodes, capacity, depotIndex, timeWindows)
% VRPTW_SAVINGS Solve the Vehicle Routing Problem with Time Windows using the Savings algorithm.
% nodes: matrix of size (N+1) x 3 where N is the number of customers and the first row is the depot
% each row represents a node with columns [x-coordinate, y-coordinate, demand]
% capacity: scalar representing the capacity of each vehicle
% depotIndex: scalar representing the index of the depot node in the nodes matrix
% timeWindows: matrix of size N x 2 representing the time windows for each customer node
% each row is [start time, end time]
% bestRoute: vector representing the best route found by the algorithm
% minDist: scalar representing the minimum distance of the best route
% Calculate the distance matrix
distanceMatrix = pdist2(nodes(:,1:2), nodes(:,1:2));
% Calculate the savings matrix
savingsMatrix = zeros(size(distanceMatrix));
for i = 2:length(nodes)
for j = i+1:length(nodes)
savingsMatrix(i,j) = distanceMatrix(i,depotIndex) + distanceMatrix(j,depotIndex) - distanceMatrix(i,j);
savingsMatrix(j,i) = savingsMatrix(i,j);
end
end
% Sort the savings matrix in descending order
[sortedSavings, indices] = sort(savingsMatrix(:),'descend');
% Initialize the routes matrix
routes = cell(length(nodes),1);
for i = 1:length(nodes)
routes{i} = i;
end
% Merge the routes using the savings algorithm
for i = 1:length(sortedSavings)
if sortedSavings(i) <= 0
break;
end
[node1, node2] = ind2sub(size(savingsMatrix), indices(i));
route1 = findRoute(routes, node1);
route2 = findRoute(routes, node2);
if length(route1) + length(route2) - 2 <= capacity && checkTimeWindows(route1, route2, timeWindows)
routes{route1(1)} = [node1, route1, node2, route2(route2~=node2)];
routes{route2(1)} = [];
end
end
% Remove empty routes
routes(cellfun(@isempty,routes)) = [];
% Calculate the distance of each route and find the best route
minDist = Inf;
bestRoute = [];
for i = 1:length(routes)
route = routes{i};
dist = 0;
for j = 2:length(route)
dist = dist + distanceMatrix(route(j-1),route(j));
end
if dist < minDist
minDist = dist;
bestRoute = route;
end
end
end
function route = findRoute(routes, node)
% FINDROUTE Find the route containing the given node.
for i = 1:length(routes)
if ismember(node, routes{i})
route = routes{i};
return;
end
end
end
function feasible = checkTimeWindows(route1, route2, timeWindows)
% CHECKTIMEWINDOWS Check if the time windows of the two routes are feasible.
time1 = sum(timeWindows(route1,1));
time2 = sum(timeWindows(route2,1));
if time1 + time2 > timeWindows(1,2)
feasible = false;
return;
end
time1 = max(timeWindows(route1,1));
time2 = max([timeWindows(route2,1), time1 + pdist2(nodes(route1(end),1:2), nodes(route2,1:2))]);
if time2 > timeWindows(route2(end),2)
feasible = false;
return;
end
feasible = true;
end
```
在这个示例中,我们首先计算了距离矩阵和节约矩阵,然后按照节约矩阵中的节约值进行排序。接下来,我们初始化每个节点为一个单独的路线,并使用节约算法逐步合并这些路线,直到无法再合并为止。最后,我们计算每个路线的距离,并找到最短的路线作为最优解。
需要注意的是,我们在路线合并过程中还对时间窗进行了检查,以确保生成的路线满足时间窗的要求。
阅读全文