python 神经网络解决验证码识别 代码
时间: 2023-07-29 15:11:26 浏览: 154
基于TensorFlow、CNN卷积神经网络的4位字符验证码识别、90.02%正确率.完整代码+数据 毕业设计 可直接运行
5星 · 资源好评率100%
以下是一个使用Python实现神经网络解决验证码识别的示例代码,仅供参考:
```
import os
import numpy as np
from PIL import Image
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Dropout
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.utils import to_categorical
# 读取验证码图片和标签
def read_data(data_path):
data = []
labels = []
for label in os.listdir(data_path):
for image_name in os.listdir(os.path.join(data_path, label)):
image_path = os.path.join(data_path, label, image_name)
image = Image.open(image_path).convert('L') # 转换为灰度图像
image = np.array(image) / 255.0 # 归一化
data.append(image)
labels.append(label)
return np.array(data), np.array(labels)
# 将标签转换为one-hot编码
def encode_labels(labels):
label_dict = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}
return to_categorical([label_dict[label] for label in labels])
# 构建卷积神经网络模型
def build_model(input_shape, num_classes):
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
return model
# 训练模型
def train_model(model, X_train, y_train, X_val, y_val):
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
early_stop = EarlyStopping(monitor='val_loss', patience=3)
model.fit(X_train, y_train, batch_size=128, epochs=20, validation_data=(X_val, y_val), callbacks=[early_stop])
return model
# 评估模型
def evaluate_model(model, X_test, y_test):
loss, accuracy = model.evaluate(X_test, y_test)
print('Test loss:', loss)
print('Test accuracy:', accuracy)
# 加载数据
data_path = 'captcha_data'
data, labels = read_data(data_path)
labels_encoded = encode_labels(labels)
# 划分训练集、验证集和测试集
X_train, X_test, y_train, y_test = train_test_split(data, labels_encoded, test_size=0.2, random_state=42)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=42)
# 构建模型
input_shape = (50, 200, 1)
num_classes = 10
model = build_model(input_shape, num_classes)
# 训练模型
model = train_model(model, X_train, y_train, X_val, y_val)
# 评估模型
evaluate_model(model, X_test, y_test)
```
需要注意的是,上述代码中的`read_data`函数需要根据实际情况进行实现,读取验证码图片和标签的方法需要与具体的数据集相匹配。同时,神经网络模型的构建和训练需要根据实际情况进行调整,如调整网络结构、调整学习率等。
阅读全文