import numpy as np import pandas as pd #获取数据 d = pd.read_csv('/home/zhangyu/python3/gaoxiong_1.csv') x = d print('获取x特征') y = d.target print ('获取的结果') print (y[:4] )
时间: 2024-02-07 21:04:11 浏览: 160
在你提供的代码中,缺少了换行符导致代码无法正确执行。除此之外,你还需要为 target 列指定索引,否则会出现 KeyError。下面是修改后的代码:
```
import numpy as np
import pandas as pd
# 获取数据
d = pd.read_csv('/home/zhangyu/python3/gaoxiong_1.csv')
x = d
print('获取x特征')
y = d['target'] # 指定 target 列的索引
print('获取的结果')
print(y[:4])
```
这样就可以正确读取数据了。
相关问题
datas = pd.read_csv("/home/zyy/Atime/Autoformer_me/data/7m.csv") AttributeError: 'numpy.ndarray' object has no attribute 'read_csv'怎么解决
这个错误的原因是使用了`numpy.ndarray`对象调用了`read_csv`方法,而`read_csv`方法是`pandas`库中的一个函数,所以需要将数据类型转换为`pandas`的`DataFrame`对象。
你可以尝试将数据读取为`DataFrame`对象,然后再进行相关操作。具体代码如下:
```python
import pandas as pd
# 读取csv文件为DataFrame对象
datas = pd.read_csv('/home/zyy/Atime/Autoformer_me/data/7m.csv')
# 进行相关操作
# ...
# 将修改后的数据写入新的csv文件
datas.to_csv('/home/zyy/Atime/Autoformer_me/data/new_7m.csv', index=False)
```
如果你已经有了`numpy.ndarray`对象,可以使用`pandas`中的`DataFrame`函数将其转换为`DataFrame`对象,具体代码如下:
```python
import pandas as pd
import numpy as np
# 生成numpy.ndarray对象
arr = np.array([[1, 2], [3, 4]])
# 将numpy.ndarray对象转换为DataFrame对象
datas = pd.DataFrame(arr)
# 进行相关操作
# ...
# 将修改后的数据写入新的csv文件
datas.to_csv('/home/zyy/Atime/Autoformer_me/data/new_7m.csv', index=False)
```
希望这些代码可以帮助到你。
## 获取数据 from sklearn.metrics import r2_score import statsmodels.api as sm import numpy as np import pandas as pd import matplotlib.pyplot as plt data = pd.read_table('C:/Users/lb/Desktop/test/k-means_data.txt',sep='\t',engine="python",encoding = 'gbk') data.columns.values data.head()改为读取csv文件
可以使用`pd.read_csv()`函数读取csv文件。将代码中的`pd.read_table()`替换为`pd.read_csv()`,同时指定`delimiter`参数为逗号(默认值即为逗号),即可读取csv文件。下面是修改后的代码:
```python
from sklearn.metrics import r2_score
import statsmodels.api as sm
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
data = pd.read_csv('C:/Users/lb/Desktop/test/k-means_data.txt', delimiter=',', encoding='gbk')
data.columns.values
data.head()
```
阅读全文