lightgbm中n_jobs

时间: 2023-07-14 19:12:08 浏览: 104
在LightGBM中,`n_jobs`参数是用于控制训练过程中使用的CPU线程数。它决定了LightGBM可以使用的最大CPU核心数量。默认情况下,它设置为-1,这意味着LightGBM将使用所有可用的CPU核心来训练模型。 如果你的计算机性能很好,具有多核处理器,那么将`n_jobs`设置为较高的值可以加快训练速度。但是要注意,如果你的计算机性能不足或者训练数据集较小,将`n_jobs`设置得太高可能会导致训练速度变慢,因为多个线程之间的通信和同步也需要花费一定的时间。在实践中,通常将`n_jobs`设置为计算机CPU核心数的一半左右是比较合适的选择。
相关问题

lightgbm中num_threads和n_jobs的区别

在GBM中,`num_threads`和`n_jobs`都是用于指定使用的CPU线程数的参数,但是它们的含义略有不同。 `num_threads`是用于控制LightGBM中用于训练和预测的线程数。默认情况下,LightGBM使用所有可用的CPU核心来并行处理任务。如果你想限制使用的线程数,可以通过设置`num_threads`参数来实现。 `n_jobs`是用于控制LightGBM中的并行度的参数。具体来说,它控制了LightGBM在进行数据分割、特征分裂等操作时使用的并行线程数。如果你想让LightGBM的运行速度更快,可以适当增加`n_jobs`的值。 需要注意的是,`num_threads`和`n_jobs`的值应该小于或等于你机器的CPU核心数,否则可能会造成性能下降。另外,如果你的机器拥有超过一个CPU socket,那么你需要将`num_threads`设置为跨CPU socket的线程数,以最大化性能。

lgbmclassifier中的n_jobs

LGBMClassifier是LightGBM库中的一个分类器模型,它用于训练和预测分类问题。参数n_jobs用于指定模型训练期间并行运行的作业数。 n_jobs参数控制着LightGBM模型的并行计算。它接受一个整数值来指定要使用的作业数。默认值为1,表示不使用并行计算,而是使用单个作业执行训练。如果将n_jobs设置为-1,则模型将使用所有可用的CPU核心来并行执行训练。 通过增加n_jobs的值,您可以加快模型的训练速度,特别是当训练数据集规模较大时。然而,要注意的是,并行计算可能会消耗更多的系统资源。因此,在选择n_jobs的值时,您需要平衡计算速度和资源消耗之间的权衡。 请注意,n_jobs参数仅在训练过程中起作用,而不会影响模型的预测过程。

相关推荐

x_train = train.drop(['id','label'], axis=1) y_train = train['label'] x_test=test.drop(['id'], axis=1) def abs_sum(y_pre,y_tru): y_pre=np.array(y_pre) y_tru=np.array(y_tru) loss=sum(sum(abs(y_pre-y_tru))) return loss def cv_model(clf, train_x, train_y, test_x, clf_name): folds = 5 seed = 2021 kf = KFold(n_splits=folds, shuffle=True, random_state=seed) test = np.zeros((test_x.shape[0],4)) cv_scores = [] onehot_encoder = OneHotEncoder(sparse=False) for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)): print('************************************ {} ************************************'.format(str(i+1))) trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index] if clf_name == "lgb": train_matrix = clf.Dataset(trn_x, label=trn_y) valid_matrix = clf.Dataset(val_x, label=val_y) params = { 'boosting_type': 'gbdt', 'objective': 'multiclass', 'num_class': 4, 'num_leaves': 2 ** 5, 'feature_fraction': 0.8, 'bagging_fraction': 0.8, 'bagging_freq': 4, 'learning_rate': 0.1, 'seed': seed, 'nthread': 28, 'n_jobs':24, 'verbose': -1, } model = clf.train(params, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=2000, verbose_eval=100, early_stopping_rounds=200) val_pred = model.predict(val_x, num_iteration=model.best_iteration) test_pred = model.predict(test_x, num_iteration=model.best_iteration) val_y=np.array(val_y).reshape(-1, 1) val_y = onehot_encoder.fit_transform(val_y) print('预测的概率矩阵为:') print(test_pred) test += test_pred score=abs_sum(val_y, val_pred) cv_scores.append(score) print(cv_scores) print("%s_scotrainre_list:" % clf_name, cv_scores) print("%s_score_mean:" % clf_name, np.mean(cv_scores)) print("%s_score_std:" % clf_name, np.std(cv_scores)) test=test/kf.n_splits return test def lgb_model(x_train, y_train, x_test): lgb_test = cv_model(lgb, x_train, y_train, x_test, "lgb") return lgb_test lgb_test = lgb_model(x_train, y_train, x_test) 这段代码运用了什么学习模型

def cv_model(clf, train_x, train_y, test_x, clf_name='lgb'): folds = 5 seed = 2021 kf = KFold(n_splits=folds, shuffle=True, random_state=seed) train = np.zeros(train_x.shape[0]) test = np.zeros(test_x.shape[0]) cv_scores = [] for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)): print('************ {} *************'.format(str(i+1))) trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index] train_matrix = clf.Dataset(trn_x, label=trn_y) valid_matrix = clf.Dataset(val_x, label=val_y) params = { 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'min_child_weight': 5, 'num_leaves': 2**6, 'lambda_l2': 10, 'feature_fraction': 0.9, 'bagging_fraction': 0.9, 'bagging_freq': 4, 'learning_rate': 0.01, 'seed': 2021, 'nthread': 28, 'n_jobs':-1, 'silent': True, 'verbose': -1, } model = clf.train(params, train_matrix, 50000, valid_sets=[train_matrix, valid_matrix], #categorical_feature = categorical_feature, verbose_eval=500,early_stopping_rounds=200) val_pred = model.predict(val_x, num_iteration=model.best_iteration) test_pred = model.predict(test_x, num_iteration=model.best_iteration) train[valid_index] = val_pred test += test_pred / kf.n_splits cv_scores.append(roc_auc_score(val_y, val_pred)) print(cv_scores) print("%s_scotrainre_list:" % clf_name, cv_scores) print("%s_score_mean:" % clf_name, np.mean(cv_scores)) print("%s_score_std:" % clf_name, np.std(cv_scores)) return train, test lgb_train, lgb_test = cv_model(lgb, x_train, y_train, x_test)这段代码什么意思,分类标签为0和1,属于二分类,预测结果点击率的数值是怎么来的

# seeds = [2222, 5, 4, 2, 209, 4096, 2048, 1024, 2015, 1015, 820]#11 seeds = [2]#2 num_model_seed = 1 oof = np.zeros(X_train.shape[0]) prediction = np.zeros(X_test.shape[0]) feat_imp_df = pd.DataFrame({'feats': feature_name, 'imp': 0}) parameters = { 'learning_rate': 0.008, 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'num_leaves': 63, 'feature_fraction': 0.8,#原来0.8 'bagging_fraction': 0.8, 'bagging_freq': 5,#5 'seed': 2, 'bagging_seed': 1, 'feature_fraction_seed': 7, 'min_data_in_leaf': 20, 'verbose': -1, 'n_jobs':4 } fold = 5 for model_seed in range(num_model_seed): print(seeds[model_seed],"--------------------------------------------------------------------------------------------") oof_cat = np.zeros(X_train.shape[0]) prediction_cat = np.zeros(X_test.shape[0]) skf = StratifiedKFold(n_splits=fold, random_state=seeds[model_seed], shuffle=True) for index, (train_index, test_index) in enumerate(skf.split(X_train, y)): train_x, test_x, train_y, test_y = X_train[feature_name].iloc[train_index], X_train[feature_name].iloc[test_index], y.iloc[train_index], y.iloc[test_index] dtrain = lgb.Dataset(train_x, label=train_y) dval = lgb.Dataset(test_x, label=test_y) lgb_model = lgb.train( parameters, dtrain, num_boost_round=10000, valid_sets=[dval], early_stopping_rounds=100, verbose_eval=100, ) oof_cat[test_index] += lgb_model.predict(test_x,num_iteration=lgb_model.best_iteration) prediction_cat += lgb_model.predict(X_test,num_iteration=lgb_model.best_iteration) / fold feat_imp_df['imp'] += lgb_model.feature_importance() del train_x del test_x del train_y del test_y del lgb_model oof += oof_cat / num_model_seed prediction += prediction_cat / num_model_seed gc.collect()解释上面的python代码

最新推荐

recommend-type

基于Web开发的聊天系统(模拟QQ的基本功能)源码+项目说明.zip

基于Web开发的聊天系统(模拟QQ的基本功能)源码+项目说明.zip 本项目是一个仿QQ基本功能的前后端分离项目。前端采用了vue.js技术栈,后端采用springboot+netty混合开发。实现了好友申请、好友分组、好友聊天、群管理、群公告、用户群聊等功能。 后端技术栈 1. Spring Boot 2. netty nio 3. WebSocket 4. MyBatis 5. Spring Data JPA 6. Redis 7. MySQL 8. Spring Session 9. Alibaba Druid 10. Gradle #### 前端技术栈 1. Vue 3. axios 4. vue-router 5. Vuex 6. WebSocket 7. vue-cli4 8. JavaScript ES6 9. npm 【说明】 【1】项目代码完整且功能都验证ok,确保稳定可靠运行后才上传。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通,帮助解答。 【2】项目主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领
recommend-type

wx293儿童预防接种预约小程序-springboot+vue+uniapp.zip(可运行源码+sql文件+文档)

本儿童预防接种预约微信小程序可以实现管理员和用户。管理员功能有个人中心,用户管理,儿童信息管理,疫苗信息管理,儿童接种管理,儿童接种史管理,医疗机构管理,预约接种管理,系统管理等。用户功能有注册登录,儿童信息,疫苗信息,儿童接种,儿童接种史,医疗机构,预约接种,我的收藏管理等。因而具有一定的实用性。 本站后台采用Java的SSM框架进行后台管理开发,可以在浏览器上登录进行后台数据方面的管理,MySQL作为本地数据库,微信小程序用到了微信开发者工具,充分保证系统的稳定性。系统具有界面清晰、操作简单,功能齐全的特点,使得医院挂号信息管理工作系统化、规范化。 管理员可以管理用户信息,可以对用户信息进行添加删除修改操作。管理员可以对儿童信息进行添加,查询修改,删除操作。系统管理员可以管理疫苗信息。系统管理员可以添加,修改,删除儿童接种史。 小程序患者是需要注册才可以进行登录的。在小程序里点击我的,会出现关于我的界面,在这里可以修改个人信息,以及可以点击其他功能模块。用户可以提交儿童接种预约信息。
recommend-type

2010-2022年 ESG的同群效应().zip

ESG是英文 Environmental(环境)、Social(社会)和Governance(治理)的缩写,是关注企业环境、社会、治理绩效的可持续发展理念和价值观。它并非一种新的投资策略,而是一种关注企业非财务绩效的投资理念。 同群效应,顾名思义,是指企业在环境、社会和治理方面会受到同行业、同类型企业的影响。这种影响可能是正向的,也可能是负向的。企业要善于观察和学习同行业、同类型企业的优秀实践经验,同时也要警惕潜在的负面影响,并采取措施规避风险。 相关数据指标 股票代码 、年份、行业代码、行政区划代码、ESG、E、S、G、同行业同群-ESG_均值、同行业同群-ESG_中位数、同省份同群-ESG_均值、同省份同群-ESG_中位数、同行业同群-E_均值、同行业同群-E_中位数、同省份同群-E_均值、同省份同群-E_中位数、同行业同群-S_均值、同行业同群-S_中位数、同省份同群-S_均值、同省份同群-S_中位数、同行业同群-G_均值、同行业同群-G_中位数、同省份同群-G_均值、同省份同群-G_中位数。
recommend-type

大学生求职就业网.zip

大学生求职就业网.zip
recommend-type

wx252日语词汇学习小程序-ssm+vue+uniapp.zip(可运行源码+sql文件+文档)

日语词汇学习小程序客户端要求在系统的安卓上可以运行,主要实现了词汇单词和签到打卡信息等相关信息的查看,并且根据需求进行对管理员后端;首页、个人中心、用户管理、词汇单词、签到打卡、试卷管理、试题管理、系统管理、在线练习,用户前端;首页、N2词汇、签到打卡、我的等主要功能模块的操作和管理。 个人中心,通过填写原密码、新密码、确认密码等信息进行修改操作 个人信息,通过填写用户名等信息进行修改、查看操作 用户管理,通过填写账号、密码、姓名、年龄、电话、邮箱、头像等信息进行详情、修改、删除操作 词汇单词,通过填写单词、播放、例句、封面等信息进行详情、修改、删除操作 签到打卡,通过填写账号、姓名、头像、计划问题、打卡时间等信息进行详情、修改、删除操作 试卷管理,通过填写习题名称、练习时长、试卷状态等信息进行详情、修改、删除操作 试题管理,通过填写试卷、试题名称、分值、答案、类型等信息进行详情、修改、删除操作 轮播图;该页面为轮播图管理界面,管理员可以在此页面进行首页轮播图的管理,通过新建操作可在轮播图中加入新的图片,还可以对以上传的图片进行修改操作,以及图片的删除操作
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。