逐行分析下面的代码:print('Building new-user table ...') new_user = {} for user, news in trainSet.items(): for new in news: if new not in new_user: new_user[new] = set() new_user[new].add(user) print('Build new-user table success!') new_count = len(new_user) print('Total new number = %d' % new_count) print('Build user co-rated users matrix ...') for new, users in new_user.items(): for u in users: for v in users: if u == v: continue user_sim_matrix.setdefault(u, {}) user_sim_matrix[u].setdefault(v, 0) user_sim_matrix[u][v] += 1 print('Build user co-rated users matrix success!') print('Calculating user similarity matrix ...') for u, related_users in user_sim_matrix.items(): for v, count in related_users.items(): user_sim_matrix[u][v] = count / math.sqrt(len(trainSet[u]) * len(trainSet[v])) print('Calculate user similarity matrix success!')

时间: 2024-04-28 18:22:11 浏览: 13
这段代码的作用是建立一个基于用户的协同过滤推荐系统,用于推荐给用户他们可能感兴趣的新闻。 首先,代码输出 "Building new-user table ..." 的提示信息,表示正在构建新用户表。然后,通过遍历训练集 trainSet 中的每个用户和他们的新闻,将用户和其阅读过的新闻加入到新用户表 new_user 中。 接下来,程序遍历新用户表中的每个新闻和阅读过该新闻的用户,然后构建用户协同矩阵,即统计共同阅读过某个新闻的所有用户的数量,并将其存储在 user_sim_matrix 中。 最后,程序通过计算用户相似度矩阵,即将用户协同矩阵中的数量转化为相似度得分,来计算用户之间的相似度,并以 "Calculating user similarity matrix ..." 的提示信息表示该过程正在进行中,最终输出 "Calculate user similarity matrix success!" 的提示信息表示计算完成。
相关问题

逐行分析下面的代码:import random import numpy as np import pandas as pd import math from operator import itemgetter data_path = './ml-latest-small/' data = pd.read_csv(data_path+'ratings.csv') data.head() data.pivot(index='userId', columns='newId', values='rating') trainSet, testSet = {}, {} trainSet_len, testSet_len = 0, 0 pivot = 0.75 for ele in data.itertuples(): user, new, rating = getattr(ele, 'userId'), getattr(ele, 'newId'), getattr(ele, 'rating') if random.random() < pivot: trainSet.setdefault(user, {}) trainSet[user][new] = rating trainSet_len += 1 else: testSet.setdefault(user, {}) testSet[user][new] = rating testSet_len += 1 print('Split trainingSet and testSet success!') print('TrainSet = %s' % trainSet_len) print('TestSet = %s' % testSet_len) user_sim_matrix = {} print('Building new-user table ...') new_user = {} for user, news in trainSet.items(): for new in news: if new not in new_user: new_user[new] = set() new_user[new].add(user) print('Build new-user table success!') new_count = len(new_user) print('Total new number = %d' % new_count) print('Build user co-rated users matrix ...') for new, users in new_user.items(): for u in users: for v in users: if u == v: continue user_sim_matrix.setdefault(u, {}) user_sim_matrix[u].setdefault(v, 0) user_sim_matrix[u][v] += 1 print('Build user co-rated users matrix success!') print('Calculating user similarity matrix ...') for u, related_users in user_sim_matrix.items(): for v, count in related_users.items(): user_sim_matrix[u][v] = count / math.sqrt(len(trainSet[u]) * len(trainSet[v])) print('Calculate user similarity matrix success!') k = 20 n = 10 aim_user = 3 rank ={} watched_news = trainSet[aim_user] for v, wuv in sorted(user_sim_matrix[aim_user].items(), key=lambda x: x[1], reverse=True)[0:k]: for new in trainSet[v]: if new in watched_news: continue rank.setdefault(new, 0) rank[new] += wuv rec_news = sorted(rank.items(), key=itemgetter(1), reverse=True)[:n] rec_news

这段代码是一个协同过滤推荐算法的实现,主要包括以下步骤: 1. 导入需要的包:random、numpy、pandas、math、itemgetter。 2. 读取评分数据文件,将数据拆分成训练集和测试集,并统计它们的大小。 3. 构建新闻-用户表,记录每个用户评分过的新闻。 4. 构建用户相似度矩阵,记录每个用户与其他用户的相似度。 5. 根据目标用户和相似度矩阵,推荐目标用户可能感兴趣的新闻。 具体实现细节如下: 1. 读取评分数据文件,并将评分数据拆分成训练集和测试集,以随机数的方式将每个评分数据划分到训练集或测试集中。 2. 构建新闻-用户表,记录每个用户评分过的新闻。具体实现是遍历训练集中的每个评分数据,然后将用户和新闻作为字典的键,评分作为字典的值,添加到训练集字典中。 3. 构建用户相似度矩阵,记录每个用户与其他用户的相似度。具体实现是遍历新闻-用户表,对于每个新闻,将评分过该新闻的所有用户记录到一个集合中。然后遍历集合中的每个用户对,计算它们之间的相似度,存储到用户相似度矩阵中。 4. 根据目标用户和相似度矩阵,推荐目标用户可能感兴趣的新闻。具体实现是遍历相似度矩阵中与目标用户相似度最高的k个用户,然后遍历这些用户评分过的新闻,计算每个新闻与目标用户的相似度权重,最后按权重排序,选取前n个新闻作为推荐结果。

逐行分析下面的代码:import random import numpy as np import pandas as pd import math from operator import itemgetter data_path = './ml-latest-small/' data = pd.read_csv(data_path+'ratings.csv') data.head() data.pivot(index='userId', columns='newId', values='rating') trainSet, testSet = {}, {} trainSet_len, testSet_len = 0, 0 pivot = 0.75 for ele in data.itertuples(): user, new, rating = getattr(ele, 'userId'), getattr(ele, 'newId'), getattr(ele, 'rating') if random.random() < pivot: trainSet.setdefault(user, {}) trainSet[user][new] = rating trainSet_len += 1 else: testSet.setdefault(user, {}) testSet[user][new] = rating testSet_len += 1 print('Split trainingSet and testSet success!') print('TrainSet = %s' % trainSet_len) print('TestSet = %s' % testSet_len) new_popular = {} for user, news in trainSet.items(): for new in news: if new not in new_popular: new_popular[new] = 0 new_popular[new] += 1 new_count = len(new_popular) print('Total movie number = %d' % new_count) print('Build user co-rated news matrix ...') new_sim_matrix = {} for user, news in trainSet.items(): for m1 in news: for m2 in news: if m1 == m2: continue new_sim_matrix.setdefault(m1, {}) new_sim_matrix[m1].setdefault(m2, 0) new_sim_matrix[m1][m2] += 1 print('Build user co-rated movies matrix success!') print('Calculating news similarity matrix ...') for m1, related_news in new_sim_matrix.items(): for m2, count in related_news.items(): if new_popular[m1] == 0 or new_popular[m2] == 0: new_sim_matrix[m1][m2] = 0 else: new_sim_matrix[m1][m2] = count / math.sqrt(new_popular[m1] * new_popular[m2]) print('Calculate news similarity matrix success!') k = 20 n = 10 aim_user = 20 rank ={} watched_news = trainSet[aim_user] for new, rating in watched_news.items(): for related_new, w in sorted(new_sim_matrix[new].items(), key=itemgetter(1), reverse=True)[:k]: if related_new in watched_news: continue rank.setdefault(related_new, 0) rank[related_new] += w * float(rating) rec_news = sorted(rank.items(), key=itemgetter(1), reverse=True)[:n] rec_news

这段代码是一个电影推荐系统的实现。下面是对代码的逐行分析: 1. `import random import numpy as np import pandas as pd import math from operator import itemgetter`:导入需要使用的库 2. `data_path = './ml-latest-small/' data = pd.read_csv(data_path+'ratings.csv') data.head()`:读取电影评分数据,将其存储在一个DataFrame中,并输出前5行数据 3. `data.pivot(index='userId', columns='newId', values='rating')`:将数据按照用户ID和电影ID进行重塑,创建一个用户-电影评分的矩阵 4. `trainSet, testSet = {}, {} trainSet_len, testSet_len = 0, 0 pivot = 0.75`:初始化训练集和测试集,并设置训练集占比为0.75 5. `for ele in data.itertuples():`:遍历数据中的每一行 6. `user, new, rating = getattr(ele, 'userId'), getattr(ele, 'newId'), getattr(ele, 'rating')`:获取每一行数据中的用户ID、电影ID和评分 7. `if random.random() < pivot: trainSet.setdefault(user, {}) trainSet[user][new] = rating trainSet_len += 1 else: testSet.setdefault(user, {}) testSet[user][new] = rating testSet_len += 1`:根据训练集占比将数据划分为训练集和测试集,并统计训练集和测试集中的电影数量 8. `print('Split trainingSet and testSet success!') print('TrainSet = %s' % trainSet_len) print('TestSet = %s' % testSet_len)`:输出训练集和测试集的电影数量 9. `new_popular = {} for user, news in trainSet.items(): for new in news: if new not in new_popular: new_popular[new] = 0 new_popular[new] += 1`:统计每部电影的流行度(出现次数) 10. `new_count = len(new_popular) print('Total movie number = %d' % new_count)`:输出电影总数 11. `new_sim_matrix = {} for user, news in trainSet.items(): for m1 in news: for m2 in news: if m1 == m2: continue new_sim_matrix.setdefault(m1, {}) new_sim_matrix[m1].setdefault(m2, 0) new_sim_matrix[m1][m2] += 1`:构建用户-电影协同过滤矩阵,统计每对电影被多少个用户共同观看过 12. `print('Build user co-rated movies matrix success!')`:输出构建协同过滤矩阵成功信息 13. `for m1, related_news in new_sim_matrix.items(): for m2, count in related_news.items(): if new_popular[m1] == 0 or new_popular[m2] == 0: new_sim_matrix[m1][m2] = 0 else: new_sim_matrix[m1][m2] = count / math.sqrt(new_popular[m1] * new_popular[m2])`:计算电影之间的相似度,使用余弦相似度度量 14. `print('Calculate news similarity matrix success!')`:输出计算电影相似度成功信息 15. `k = 20 n = 10 aim_user = 20`:定义参数,包括推荐电影的数量和目标用户ID 16. `rank ={} watched_news = trainSet[aim_user] for new, rating in watched_news.items(): for related_new, w in sorted(new_sim_matrix[new].items(), key=itemgetter(1), reverse=True)[:k]: if related_new in watched_news: continue rank.setdefault(related_new, 0) rank[related_new] += w * float(rating) rec_news = sorted(rank.items(), key=itemgetter(1), reverse=True)[:n]`:为目标用户推荐电影,根据用户观看历史和电影相似度计算推荐度,并将推荐度排序输出前n个推荐电影。

相关推荐

index0 = numerical_corr.sort_values(ascending=False).index 36 print(train_data_scaler[index0].corr('spearman')) 37 38 new_numerical=['V0', 'V2', 'V3', 'V4', 'V5', 'V6', 'V10','V11', 39 'V13', 'V15', 'V16', 'V18', 'V19', 'V20', 'V22','V24','V30', 'V31', 'V37'] 40 X=np.matrix(train_data_scaler[new_numerical]) 41 VIF_list=[variance_inflation_factor(X, i) for i in range(X.shape[1])] 42 VIF_list 43 44 45 pca = PCA(n_components=0.9) 46 new_train_pca_90 = pca.fit_transform(train_data_scaler.iloc[:,0:-1]) 47 new_test_pca_90 = pca.transform(test_data_scaler) 48 new_train_pca_90 = pd.DataFrame(new_train_pca_90) 49 new_test_pca_90 = pd.DataFrame(new_test_pca_90) 50 new_train_pca_90['target'] = train_data_scaler['target'] 51 new_train_pca_90.describe() 52 53 pca = PCA(n_components=0.95) 54 new_train_pca_16 = pca.fit_transform(train_data_scaler.iloc[:,0:-1]) 55 new_test_pca_16 = pca.transform(test_data_scaler) 56 new_train_pca_16 = pd.DataFrame(new_train_pca_16) 57 new_test_pca_16 = pd.DataFrame(new_test_pca_16) 58 new_train_pca_16['target'] = train_data_scaler['target'] 59 new_train_pca_16.describe() 60 61 from sklearn.ensemble import GradientBoostingRegressor 62 63 from sklearn.model_selection import learning_curve 64 from sklearn.model_selection import ShuffleSplit 65 66 new_train_pca_16 = new_train_pca_16.fillna(0) 67 train = new_train_pca_16[new_test_pca_16.columns] 68 target = new_train_pca_16['target'] 69 70 train_data,test_data,train_target,test_target=train_test_split(train,target,test_size=0.2,random_state=0) 71 72 clf = LinearRegression() 73 clf.fit(train_data, train_target) 74 score = mean_squared_error(test_target, clf.predict(test_data)) 75 print("LinearRegression: ", score) 76 77 train_score = [] 78 test_score = []解释每一句代码的意思

最新推荐

recommend-type

vue中使用vue-print.js实现多页打印

本文主要介绍了vue项目中使用print.js打印,解决多页,分页,打印预览样式修改等问题。 引入安装vue-print.js cnpm i vue-printjs --save-dev 解决打印多页只出现一页问题 由于打印插件存在问题,如果打印文件...
recommend-type

javascript实现window.print()去除页眉页脚

在JavaScript中,`window.print()`方法是一个非常实用的功能,它允许用户直接从浏览器打印网页内容。然而,默认情况下,打印操作可能会包含页眉和页脚,这些元素可能包含URL、日期或者页码等信息,有时并不符合我们...
recommend-type

Python Numpy:找到list中的np.nan值方法

for item in x: if np.isnan(item): print('yes') ``` 在这个例子中,`np.isnan(item)`函数被用来遍历数组`x`的每个元素,如果元素是`np.nan`,则打印"yes"。 有时候,我们可能需要找到包含`np.nan`值的索引,...
recommend-type

python1.使用while循环实现输出2-3+4-5+6...+100 的和_一个倔强的女孩的博客-CSDN博客_python1+2+3+4+5+6+…+100代码.pdf

for i in range(1, 101): sum += i print("the sum is %s." % sum) ``` 这个代码使用for循环来实现输出1+2+3+...+100的和。循环体中将每个数字加到sum中,最后打印sum的值。 Python的循环语句提供了多种方式来实现...
recommend-type

tensorflow实现在函数中用tf.Print输出中间值

`tf.Print`操作提供了一个在TensorFlow程序中打印张量值的功能,这对于在静态图模式下进行调试非常有用。通常,直接使用`print`函数只能显示张量的形状,而无法显示其实际数值。`tf.Print`解决了这个问题,它允许...
recommend-type

电力电子系统建模与控制入门

"该资源是关于电力电子系统建模及控制的课程介绍,包含了课程的基本信息、教材与参考书目,以及课程的主要内容和学习要求。" 电力电子系统建模及控制是电力工程领域的一个重要分支,涉及到多学科的交叉应用,如功率变换技术、电工电子技术和自动控制理论。这门课程主要讲解电力电子系统的动态模型建立方法和控制系统设计,旨在培养学生的建模和控制能力。 课程安排在每周二的第1、2节课,上课地点位于东12教401室。教材采用了徐德鸿编著的《电力电子系统建模及控制》,同时推荐了几本参考书,包括朱桂萍的《电力电子电路的计算机仿真》、Jai P. Agrawal的《Powerelectronicsystems theory and design》以及Robert W. Erickson的《Fundamentals of Power Electronics》。 课程内容涵盖了从绪论到具体电力电子变换器的建模与控制,如DC/DC变换器的动态建模、电流断续模式下的建模、电流峰值控制,以及反馈控制设计。还包括三相功率变换器的动态模型、空间矢量调制技术、逆变器的建模与控制,以及DC/DC和逆变器并联系统的动态模型和均流控制。学习这门课程的学生被要求事先预习,并尝试对书本内容进行仿真模拟,以加深理解。 电力电子技术在20世纪的众多科技成果中扮演了关键角色,广泛应用于各个领域,如电气化、汽车、通信、国防等。课程通过列举各种电力电子装置的应用实例,如直流开关电源、逆变电源、静止无功补偿装置等,强调了其在有功电源、无功电源和传动装置中的重要地位,进一步凸显了电力电子系统建模与控制技术的实用性。 学习这门课程,学生将深入理解电力电子系统的内部工作机制,掌握动态模型建立的方法,以及如何设计有效的控制系统,为实际工程应用打下坚实基础。通过仿真练习,学生可以增强解决实际问题的能力,从而在未来的工程实践中更好地应用电力电子技术。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

图像写入的陷阱:imwrite函数的潜在风险和规避策略,规避图像写入风险,保障数据安全

![图像写入的陷阱:imwrite函数的潜在风险和规避策略,规避图像写入风险,保障数据安全](https://static-aliyun-doc.oss-accelerate.aliyuncs.com/assets/img/zh-CN/2275688951/p86862.png) # 1. 图像写入的基本原理与陷阱 图像写入是计算机视觉和图像处理中一项基本操作,它将图像数据从内存保存到文件中。图像写入过程涉及将图像数据转换为特定文件格式,并将其写入磁盘。 在图像写入过程中,存在一些潜在陷阱,可能会导致写入失败或图像质量下降。这些陷阱包括: - **数据类型不匹配:**图像数据可能与目标文
recommend-type

protobuf-5.27.2 交叉编译

protobuf(Protocol Buffers)是一个由Google开发的轻量级、高效的序列化数据格式,用于在各种语言之间传输结构化的数据。版本5.27.2是一个较新的稳定版本,支持跨平台编译,使得可以在不同的架构和操作系统上构建和使用protobuf库。 交叉编译是指在一个平台上(通常为开发机)编译生成目标平台的可执行文件或库。对于protobuf的交叉编译,通常需要按照以下步骤操作: 1. 安装必要的工具:在源码目录下,你需要安装适合你的目标平台的C++编译器和相关工具链。 2. 配置Makefile或CMakeLists.txt:在protobuf的源码目录中,通常有一个CMa
recommend-type

SQL数据库基础入门:发展历程与关键概念

本文档深入介绍了SQL数据库的基础知识,首先从数据库的定义出发,强调其作为数据管理工具的重要性,减轻了开发人员的数据处理负担。数据库的核心概念是"万物皆关系",即使在面向对象编程中也有明显区分。文档讲述了数据库的发展历程,从早期的层次化和网状数据库到关系型数据库的兴起,如Oracle的里程碑式论文和拉里·埃里森推动的关系数据库商业化。Oracle的成功带动了全球范围内的数据库竞争,最终催生了SQL这一通用的数据库操作语言,统一了标准,使得关系型数据库成为主流。 接着,文档详细解释了数据库系统的构成,包括数据库本身(存储相关数据的集合)、数据库管理系统(DBMS,负责数据管理和操作的软件),以及数据库管理员(DBA,负责维护和管理整个系统)和用户应用程序(如Microsoft的SSMS)。这些组成部分协同工作,确保数据的有效管理和高效处理。 数据库系统的基本要求包括数据的独立性,即数据和程序的解耦,有助于快速开发和降低成本;减少冗余数据,提高数据共享性,以提高效率;以及系统的稳定性和安全性。学习SQL时,要注意不同数据库软件可能存在的差异,但核心语言SQL的学习是通用的,后续再根据具体产品学习特异性。 本文档提供了一个全面的框架,涵盖了SQL数据库从基础概念、发展历程、系统架构到基本要求的方方面面,对于初学者和数据库管理员来说是一份宝贵的参考资料。