ResNet-18 网络模型是什么
时间: 2024-01-03 07:03:02 浏览: 208
ResNet-18 是一种深度残差网络,由微软研究院的 Kaiming He 等人提出。它有 18 层卷积神经网络结构,用于图像分类任务。ResNet-18 的主要特点是在网络中引入了残差模块,这些模块可以有效地缓解梯度消失问题,使得模型可以训练得更深,并且在相同参数量的情况下,比传统卷积神经网络有更好的性能。ResNet-18 的结构相对简单,适用于较小的数据集和计算资源,因此被广泛应用于计算机视觉领域。
相关问题
迁移学习ResNet-18 网络模型是什么意思
迁移学习是指将一个已经训练好的神经网络模型(如ResNet-18)的参数和权重等信息,应用到另一个相关的任务上,以加速新任务的训练和提高模型的性能。这种方法可以通过在新任务中微调原始模型来实现。通常,迁移学习适用于目标数据集较小的情况,因为使用预先训练的模型可以更好地利用有限的数据,从而提高模型的泛化能力。
神经网络架构超参数如何设计: ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152的架构是如何设计出来的? >卷积核大小,每一类卷积块个数,经过多少个卷积块降维 >除了人工调参之外,有没有更好的方法?
ResNet是由微软亚洲研究院提出的,其设计思路是通过残差连接来解决深度神经网络训练过程中梯度消失和梯度爆炸问题。ResNet-18/34/50/101/152的架构是基于ResNet基础模块的堆叠而来的,其中ResNet基础模块包括两种类型:普通的卷积块和残差块。
普通的卷积块是由两个3x3的卷积层组成,每个卷积层后面跟着一个批归一化层和一个激活函数层,然后将两个卷积层的输出相加作为该块的输出。
残差块则是由两个普通的卷积块和一个跨层连接组成。跨层连接可以是恒等映射或者1x1卷积层,其目的是将前一个卷积块的输出直接加到后一个卷积块的输出上,从而实现残差连接。
ResNet-18和ResNet-34是由多个不同深度的卷积块组成,每个卷积块的输出通道数都为64。ResNet-50/101/152是由多个残差块组成,其中ResNet-50由3个残差块组成,每个残差块包含3个普通的卷积块和一个跨层连接,其输出通道数逐渐增加。ResNet-101和ResNet-152的区别在于残差块的数量和输出通道数的大小。
在设计神经网络架构超参数时,除了人工调参之外,还可以使用自动化调参的方法,例如网格搜索、随机搜索、贝叶斯优化等。这些方法可以有效地搜索超参数空间,找到最优的超参数组合,从而提高模型的性能。
阅读全文