jupyter notebook计量经济中检验代码和数据描述代码
时间: 2023-11-08 17:05:33 浏览: 153
以下是计量经济中常见的一些检验和数据描述的代码示例:
1. 线性回归模型:
```python
import pandas as pd
import statsmodels.api as sm
# 读取数据
data = pd.read_csv('data.csv')
# 构建模型
X = data[['X1', 'X2']]
y = data['y']
X = sm.add_constant(X)
model = sm.OLS(y, X).fit()
# 输出模型结果
print(model.summary())
```
2. 非线性回归模型:
```python
import pandas as pd
import numpy as np
import statsmodels.api as sm
# 读取数据
data = pd.read_csv('data.csv')
# 构建模型
def func(x, a, b, c):
return a * np.exp(-b * x) + c
X = data['X']
y = data['y']
params, _ = sm.curve_fit(func, X, y)
# 输出模型参数
print('a =', params[0])
print('b =', params[1])
print('c =', params[2])
```
3. 卡方检验:
```python
import pandas as pd
import scipy.stats as stats
# 读取数据
data = pd.read_csv('data.csv')
# 计算卡方值和 p 值
observed = data['observed'].values
expected = data['expected'].values
chi2, p = stats.chisquare(observed, expected)
# 输出结果
print('卡方值:', chi2)
print('p 值:', p)
```
4. t 检验:
```python
import pandas as pd
import scipy.stats as stats
# 读取数据
data = pd.read_csv('data.csv')
# 进行 t 检验
sample1 = data['sample1']
sample2 = data['sample2']
t, p = stats.ttest_ind(sample1, sample2, equal_var=False)
# 输出结果
print('t 值:', t)
print('p 值:', p)
```
5. 描述性统计:
```python
import pandas as pd
# 读取数据
data = pd.read_csv('data.csv')
# 计算均值、标准差、最大值、最小值等
mean = data.mean()
std = data.std()
max_value = data.max()
min_value = data.min()
# 输出结果
print('均值:', mean)
print('标准差:', std)
print('最大值:', max_value)
print('最小值:', min_value)
```
阅读全文