import pickle import numpy as np from keras.models import load_model from tensorflow.keras.preprocessing.sequence import pad_sequences # 导入字典 with open('word_dict.pk', 'rb') as f: word_dictionary = pickle.load(f) with open('label_dict.pk', 'rb') as f: output_dictionary = pickle.load(f) try: # 数据预处理 input_shape = 180 sent = "电视刚安装好,说实话,画质不怎么样,很差!" x = [[word_dictionary[word] for word in sent]] x = pad_sequences(maxlen=input_shape, sequences=x, padding='post', value=0) # 载入模型 model_save_path = 'model.h5' lstm_model = load_model(model_save_path) # 模型预测 y_predict = lstm_model.predict(x) label_dict = {v:k for k,v in output_dictionary.items()} print('输入语句: %s' % sent) print('情感预测结果: %s' % label_dict[np.argmax(y_predict)]) except KeyError as err: print("您输入的句子有汉字不在词汇表中,请重新输入!") print("不在词汇表中的单词为:%s." % err)
时间: 2024-01-26 15:04:33 浏览: 142
1_notmnist.rar_notMNIST.pickle_tensorflow_tensorflow数据_基于python的
这段代码的作用是使用已经训练好的LSTM模型对输入句子进行情感分类预测。模型的载入使用了`load_model()`方法,但是在载入模型时出现了UnicodeDecodeError错误。
这个错误通常是因为模型文件的编码格式不是utf-8编码,Python无法解码模型文件。为了解决这个问题,你可以尝试使用二进制模式打开模型文件,即将模型文件的打开方式改为“rb”,如下所示:
```
lstm_model = load_model(model_save_path, compile=False)
```
此外,你还需要将`compile`参数设置为False,否则会出现类似“AttributeError: 'NoneType' object has no attribute 'predict'”的错误。
修改后的代码如下:
```
import pickle
import numpy as np
from keras.models import load_model
from tensorflow.keras.preprocessing.sequence import pad_sequences
# 导入字典
with open('word_dict.pk', 'rb') as f:
word_dictionary = pickle.load(f)
with open('label_dict.pk', 'rb') as f:
output_dictionary = pickle.load(f)
try:
# 数据预处理
input_shape = 180
sent = "电视刚安装好,说实话,画质不怎么样,很差!"
x = [[word_dictionary[word] for word in sent]]
x = pad_sequences(maxlen=input_shape, sequences=x, padding='post', value=0)
# 载入模型
model_save_path = 'model.h5'
lstm_model = load_model(model_save_path, compile=False)
# 模型预测
y_predict = lstm_model.predict(x)
label_dict = {v:k for k,v in output_dictionary.items()}
print('输入语句: %s' % sent)
print('情感预测结果: %s' % label_dict[np.argmax(y_predict)])
except KeyError as err:
print("您输入的句子有汉字不在词汇表中,请重新输入!")
print("不在词汇表中的单词为:%s." % err)
```
希望能帮助到你!
阅读全文