利用python语言基于卷积神经网络的人脸识别,使用数据集Yale_64x64.mat
时间: 2023-12-28 10:03:37 浏览: 89
好的,您的问题是如何利用Python语言基于卷积神经网络的人脸识别,使用数据集Yale_64x64.mat。以下是一个基本的实现过程:
1. 导入必要的库和数据集
```python
import numpy as np
import scipy.io as sio
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
from keras.utils import np_utils
# 导入数据集
data = sio.loadmat('Yale_64x64.mat')
X, y = data['fea'], data['gnd']
```
2. 数据预处理
```python
# 将数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 将数据集转换为CNN所需的格式
X_train = X_train.reshape(X_train.shape[0], 64, 64, 1).astype('float32')
X_test = X_test.reshape(X_test.shape[0], 64, 64, 1).astype('float32')
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
```
3. 建立卷积神经网络模型
```python
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 1)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(15, activation='softmax'))
```
4. 编译模型并训练
```python
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=20, batch_size=32)
```
5. 评估模型性能
```python
scores = model.evaluate(X_test, y_test, verbose=0)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])
```
这是一个基本的卷积神经网络人脸识别的实现过程,您可以根据需要进行调整和改进。
阅读全文