res = cv2.drawContours(img, contours, -1, (0, 0, 255), 1)
时间: 2023-05-13 14:07:26 浏览: 69
这是一行使用 OpenCV 库中的 drawContours 函数的代码,它可以将轮廓绘制在图像上。其中,img 是要绘制轮廓的图像,contours 是轮廓的数组,-1 表示绘制所有轮廓,(0, 0, 255) 是轮廓的颜色,1 是轮廓的线宽。
相关问题
import cv2 import glob import numpy as np imgs = glob.glob("maze.png") res, L, N = [], 256, 5 for i in imgs: img = cv2.imread(i) img = cv2.resize(img, (512, 512)) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) _, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV) # contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) max_contour = max(contours, key=cv2.contourArea) epsilon = 0.1 * cv2.arcLength(max_contour, True) approx = cv2.approxPolyDP(max_contour, epsilon, True) circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 20, param1=50, param2=15, minRadius=5, maxRadius=15) if circles is not None: circles = np.round(circles[0, :]).astype("int") for (x, y, r) in circles: cv2.circle(img, (x, y), r, (0, 0, 255), 2) # edges = cv2.Canny(gray, 100, 200) contours, hierarchy = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: center, (width, height), angle = cv2.minAreaRect(contour) if -5 <= (width - height) <= 5 and 30 <= width <= 50: cv2.drawContours(img, [contour], -1, (0, 0, 255), 3) res.append(cv2.resize(img, (L, L))) resImg = np.zeros((L * N, L * N, 3), dtype=np.uint8) for i, img in enumerate(res): row, col = i // N, i % N x, y = col * L, row * L resImg[y:y + L, x:x + L] = img cv2.imshow("", resImg) cv2.waitKey(0) cv2.destroyAllWindows()
这是一段Python代码,主要的作用是对给定的maze.png图片进行处理并展示处理后的结果。具体包括以下步骤:
1. 导入cv2、glob和numpy模块。
2. 使用glob模块获取maze.png图片的路径,将其读取并调整大小为512x512。
3. 将图片转化为灰度图,并进行二值化处理。
4. 使用cv2.findContours函数找到图像中的所有轮廓,并选择面积最大的轮廓进行逼近处理。
5. 使用cv2.HoughCircles函数检测图像中的圆形,并在圆形周围画出红色圆圈。
6. 使用cv2.Canny函数进行边缘检测,再次使用cv2.findContours函数找到图像中的所有轮廓。
7. 对于每个轮廓,使用cv2.minAreaRect函数获取其最小外接矩形,并判断其长宽比是否在一定范围内,如果满足条件,则在轮廓周围画出红色矩形。
8. 将处理后的图片添加进一个列表中,并将所有图片通过numpy模块拼接成一个大图展示。
以上就是这段代码的大致执行过程。
import numpy as np import cv2 class ColorMeter(object): color_hsv = { # HSV,H表示色调(度数表示0-180),S表示饱和度(取值0-255),V表示亮度(取值0-255) # "orange": [np.array([11, 115, 70]), np.array([25, 255, 245])], "yellow": [np.array([11, 115, 70]), np.array([34, 255, 245])], "green": [np.array([35, 115, 70]), np.array([77, 255, 245])], "lightblue": [np.array([78, 115, 70]), np.array([99, 255, 245])], "blue": [np.array([100, 115, 70]), np.array([124, 255, 245])], "purple": [np.array([125, 115, 70]), np.array([155, 255, 245])], "red": [np.array([156, 115, 70]), np.array([179, 255, 245])], } def __init__(self, is_show=False): self.is_show = is_show self.img_shape = None def detect_color(self, frame): self.img_shape = frame.shape res = {} # 将图像转化为HSV格式 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) for text, range_ in self.color_hsv.items(): # 去除颜色范围外的其余颜色 mask = cv2.inRange(hsv, range_[0], range_[1]) erosion = cv2.erode(mask, np.ones((1, 1), np.uint8), iterations=2) dilation = cv2.dilate(erosion, np.ones((1, 1), np.uint8), iterations=2) target = cv2.bitwise_and(frame, frame, mask=dilation) # 将滤波后的图像变成二值图像放在binary中 ret, binary = cv2.threshold(dilation, 127, 255, cv2.THRESH_BINARY) # 在binary中发现轮廓,轮廓按照面积从小到大排列 contours, hierarchy = cv2.findContours( binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE ) if len(contours) > 0: # cv2.boundingRect()返回轮廓矩阵的坐标值,四个值为x, y, w, h, 其中x, y为左上角坐标,w,h为矩阵的宽和高 boxes = [ box for box in [cv2.boundingRect(c) for c in contours] if min(frame.shape[0], frame.shape[1]) / 10 < min(box[2], box[3]) < min(frame.shape[0], frame.shape[1]) / 1 ] if boxes: res[text] = boxes if self.is_show: for box in boxes: x, y, w, h = box # 绘制矩形框对轮廓进行定位 cv2.rectangle( frame, (x, y), (x + w, y + h), (153, 153, 0), 2 ) # 将绘制的图像保存并展示 # cv2.imwrite(save_image, img) cv2.putText( frame, # image text, # text (x, y), # literal direction cv2.FONT_HERSHEY_SIMPLEX, # dot font 0.9, # scale (255, 255, 0), # color 2, # border ) if self.is_show: cv2.imshow("image", frame) cv2.waitKey(1) # cv2.destroyAllWindows() return res if __name__ == "__main__": cap = cv2.VideoCapture(0) m = ColorMeter(is_show=True) while True: success, frame = cap.read() res = m.detect_color(frame) print(res) if cv2.waitKey(1) & 0xFF == ord('q'): break
"red": (0, 255, 255),
"green": (85, 255, 128),
"blue": (170, 255, 128) } 你好!我能够理解你正在询问的是如何使用HSV色彩空间来表示不同的颜色。例如,红色的HSV值为(0,255,255),绿色的HSV值为(85,255,128),蓝色的HSV值为(170,255,128)。
阅读全文