基于adaboost算法的人脸检测python代码
时间: 2023-05-24 16:02:55 浏览: 257
A:
人脸检测是计算机视觉中的一个基本任务,Adaboost算法是一种常用的分类算法,具有高精度和有效性。使用Python语言实现基于Adaboost算法的人脸检测可以通过以下步骤完成:
1. 准备训练数据集,可以使用已有的人脸数据集,如LFW和FDDB等。
2. 根据学习算法选择提取特征,特征应该具有区分度。
3. 使用Adaboost算法训练分类器,并选取分类器的阈值。
4. 对测试数据进行分类,可以利用滑动窗口的方法将图像分成多个小块,然后通过分类器判断每个小块是否是人脸。
下面是一个简单的示例代码:
```python
import cv2
# 加载分类器
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# 打开图像文件
img = cv2.imread('test.jpg')
# 转化成灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 使用分类器进行人脸检测
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
# 显示结果
for (x,y,w,h) in faces:
cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
在此示例代码中,我们使用OpenCV库提供的haar分类器进行人脸检测。首先通过`CascadeClassifier`加载分类器文件,然后通过`detectMultiScale`方法进行人脸检测。`detectMultiScale`方法返回一个由检测到的人脸矩形框的位置和大小组成的元组。最后使用`rectangle`方法在原图像上绘制人脸矩形框。