def val_step(self, data_batch): imgs = data_batch[0] labels = data_batch[1:] cls_score = self.forward_net(imgs) loss_metrics = self.head.loss(cls_score, labels, valid_mode=True) return loss_metrics
时间: 2023-06-27 19:08:37 浏览: 171
这是一个神经网络模型中的验证步骤函数。它接受一个数据批次作为输入,包含图像数据和标签。在这里,我们使用模型的前向传递函数 `forward_net` 处理图像数据,得到分类得分 `cls_score`。然后,我们将得分和标签一起传递给头部模块中的损失函数 `loss` 进行计算,得到验证损失。最后,我们返回验证损失。注意,这里的 `valid_mode` 参数是用来告诉损失函数当前是在验证模式下计算损失的。
相关问题
# 定义数据集读取器 def load_data(mode='train'): # 数据文件 datafile = './data/data116648/mnist.json.gz' print('loading mnist dataset from {} ......'.format(datafile)) data = json.load(gzip.open(datafile)) train_set, val_set, eval_set = data # 数据集相关参数,图片高度IMG_ROWS, 图片宽度IMG_COLS IMG_ROWS = 28 IMG_COLS = 28 if mode == 'train': imgs = train_set[0] labels = train_set[1] elif mode == 'valid': imgs = val_set[0] labels = val_set[1] elif mode == 'eval': imgs = eval_set[0] labels = eval_set[1] imgs_length = len(imgs) assert len(imgs) == len(labels), \ "length of train_imgs({}) should be the same as train_labels({})".format( len(imgs), len(labels)) index_list = list(range(imgs_length)) # 读入数据时用到的batchsize BATCHSIZE = 100 # 定义数据生成器 def data_generator(): if mode == 'train': random.shuffle(index_list) imgs_list = [] labels_list = [] for i in index_list: img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32') img_trans=-img #转变颜色 label = np.reshape(labels[i], [1]).astype('int64') label_trans=label imgs_list.append(img) imgs_list.append(img_trans) labels_list.append(label) labels_list.append(label_trans) if len(imgs_list) == BATCHSIZE: yield np.array(imgs_list), np.array(labels_list) imgs_list = [] labels_list = [] # 如果剩余数据的数目小于BATCHSIZE, # 则剩余数据一起构成一个大小为len(imgs_list)的mini-batch if len(imgs_list) > 0: yield np.array(imgs_list), np.array(labels_list) return data_generator
这段代码定义了一个数据集读取器load_data,用于读取MNIST数据集。具体实现如下:
- 首先从文件中加载MNIST数据集,数据集文件为'mnist.json.gz',其中包含了训练集、验证集和测试集的图像和标签数据。
- 根据不同的mode参数,从数据集中选择相应的数据集,包括训练集、验证集和测试集。
- 定义了一个数据生成器data_generator,用于生成mini-batch大小的图像数据和标签数据。其中,通过random.shuffle(index_list)实现数据集的随机打乱,防止模型过拟合。另外,为了增加数据的多样性,对于每个图像数据,还进行了颜色反转的处理。
- 最后,返回数据生成器。
Traceback (most recent call last): File "/content/faster-rcnn-pytorch/train.py", line 439, in <module> fit_one_epoch(model, train_util, loss_history, eval_callback, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, UnFreeze_Epoch, Cuda, fp16, scaler, save_period, save_dir) File "/content/faster-rcnn-pytorch/utils/utils_fit.py", line 27, in fit_one_epoch rpn_loc, rpn_cls, roi_loc, roi_cls, total = train_util.train_step(images, boxes, labels, 1, fp16, scaler) File "/content/faster-rcnn-pytorch/nets/frcnn_training.py", line 327, in train_step losses = self.forward(imgs, bboxes, labels, scale) File "/content/faster-rcnn-pytorch/nets/frcnn_training.py", line 266, in forward gt_rpn_label = torch.Tensor(gt_rpn_label).type_as(rpn_locs).long() File "/usr/local/lib/python3.10/dist-packages/torch/utils/data/_utils/signal_handling.py", line 66, in handler _error_if_any_worker_fails() RuntimeError: DataLoader worker (pid 9618) is killed by signal: Killed.
这个错误信息来自于 PyTorch 的 DataLoader,看起来是 DataLoader 的一个进程被强制终止了,导致训练进程崩溃。可能是因为内存不足或者其他系统资源限制导致的。你可以尝试减小 batch size 或者调整训练参数来缓解此问题。同时也可以尝试使用更高配置的机器来避免内存不足的问题。
阅读全文