logger.debug(f'\nPre-training Epoch : {epoch}', f'Train Loss : {train_loss.item():.4f}')这行有什么错误吗
时间: 2024-02-25 11:58:18 浏览: 112
这行代码没有明显的错误,但是它使用了两个参数:一个是字符串,另一个是浮点数。然而,它使用了逗号分隔符来将它们连接在一起,这可能会导致输出格式方面的问题。建议使用字符串格式化方法来确保输出格式正确,并避免不必要的错误。例如,可以使用f字符串或.format()方法。以下是使用f字符串的示例:
```
logger.debug(f'Pre-training Epoch : {epoch} Train Loss : {train_loss.item():.4f}')
```
或者使用.format()方法的示例:
```
logger.debug('Pre-training Epoch : {} Train Loss : {:.4f}'.format(epoch, train_loss.item()))
```
这样可以确保输出格式正确,并避免不必要的错误。
相关问题
详细解释代码: def run(self, train_set, dev_set, num_epoches=20): init_loss, _ = self.validate(dev_set) logger.info("Start training for {} epoches".format(num_epoches)) logger.info("Epoch {:2d}: dev = {:.4e}".format(0, init_loss)) th.save(self.nnet.state_dict(), os.path.join(self.checkpoint, 'dcnet.0.pkl')) for epoch in range(1, num_epoches + 1): on_train_start = time.time() train_loss, train_num_batch = self.train(train_set) on_valid_start = time.time() valid_loss, valid_num_batch = self.validate(dev_set) on_valid_end = time.time() logger.info( "Loss(time/num-utts) - Epoch {:2d}: train = {:.4e}({:.2f}s/{:d}) |" " dev = {:.4e}({:.2f}s/{:d})".format( epoch, train_loss, on_valid_start - on_train_start, train_num_batch, valid_loss, on_valid_end - on_valid_start, valid_num_batch)) save_path = os.path.join(self.checkpoint, 'dcnet.{:d}.pkl'.format(epoch)) th.save(self.nnet.state_dict(), save_path) logger.info("Training for {} epoches done!".format(num_epoches))
这段代码是一个深度学习模型的训练代码,通过多个epoch来训练模型并保存中间结果。
首先,在初始化时调用了validate()函数对dev_set进行测试,得到初始的损失值init_loss。
然后进入循环,训练num_epoches次。每次循环中,首先调用train()函数对train_set进行训练,并记录训练损失train_loss和训练batch数train_num_batch。
然后调用validate()函数对dev_set进行测试,得到验证损失valid_loss和验证batch数valid_num_batch。同时记录时间,分别计算训练和验证的时间。
接下来,打印出当前epoch的训练和验证损失,并记录模型的参数。
最后,训练结束后打印出训练完成的信息。
其中,self.nnet是一个深度学习模型,self.checkpoint是保存模型参数的路径。logger是一个记录日志信息的工具。th代表pytorch的tensor库。train_set和dev_set是训练集和验证集。
def train_one_epoch(epoch): logger.info('Start training process in epoch {}.'.format(epoch + 1)) if Ir_scheduler is not None: logger.info('Learning rate: {}.'.format(Ir scheduler.get last Ir())) model.train) losses = [ with tqdm(train_dataloader) as pbar: for data dict in pbar: optimizer.zero_grad() data_dict = to_device (data_dict, device) res = model (data_dict['rgb'], data_dict['depth']) depth scale = data dict[ 'depth max'] - data dict['depth min'] res = res * depth_scale.reshape(-1, 1, 1) + data_dict ['depth_min'].reshape(-1, 1, 1) data dict[ 'pred'] = res loss_dict = criterion (data_dict) loss = loss dict['loss'] loss.backward() optimizer.step() if 'smooth' in loss_dict.keys (): pbar.set_description('Epoch (}, loss: (:.8f}, smooth loss: {:.8f}'.format(epoch + 1, loss.item(), loss_dict['smooth'].item())) else: pbar.set_description('Epoch (), loss: (:.8f]'.format(epoch + 1, loss.item ())) losses.append(loss.mean) .item)) mean loss = np.stack(losses).mean() logger.info('Finishtrainingprocessinepochf},meantraining1oss:{:.8f}'.format(epoch+1,mean_1oss))改进这段代码
以下是我认为可以改进的几点:
1. 在训练开始时,打印出当前 epoch 的时间,方便后续对训练过程的分析。
2. 在训练过程中,计算每个 batch 的 loss 并输出,方便实时跟进模型的训练情况。
3. 在训练过程中,可以加入验证集的评估过程,以便更好地监测模型的泛化能力。
下面是改进后的代码:
```
def train_one_epoch(epoch, model, optimizer, criterion, device, train_dataloader, val_dataloader=None):
start_time = time.time()
logger.info('Start training process in epoch {} at {}.'.format(epoch + 1, datetime.now().strftime("%Y-%m-%d %H:%M:%S")))
model.train()
train_losses = []
val_losses = []
with tqdm(train_dataloader) as pbar:
for i, data_dict in enumerate(pbar):
optimizer.zero_grad()
data_dict = to_device(data_dict, device)
res = model(data_dict['rgb'], data_dict['depth'])
depth_scale = data_dict['depth_max'] - data_dict['depth_min']
res = res * depth_scale.reshape(-1, 1, 1) + data_dict['depth_min'].reshape(-1, 1, 1)
data_dict['pred'] = res
loss_dict = criterion(data_dict)
loss = loss_dict['loss']
loss.backward()
optimizer.step()
train_losses.append(loss.item())
pbar.set_description('Epoch {}, Batch {}, Loss {:.8f}'.format(epoch + 1, i + 1, loss.item()))
mean_train_loss = np.mean(train_losses)
logger.info('Finish training process in epoch {} at {}, mean training loss: {:.8f}'.format(epoch + 1, datetime.now().strftime("%Y-%m-%d %H:%M:%S"), mean_train_loss))
if val_dataloader:
model.eval()
with torch.no_grad():
for data_dict in val_dataloader:
data_dict = to_device(data_dict, device)
res = model(data_dict['rgb'], data_dict['depth'])
depth_scale = data_dict['depth_max'] - data_dict['depth_min']
res = res * depth_scale.reshape(-1, 1, 1) + data_dict['depth_min'].reshape(-1, 1, 1)
data_dict['pred'] = res
loss_dict = criterion(data_dict)
loss = loss_dict['loss']
val_losses.append(loss.item())
mean_val_loss = np.mean(val_losses)
logger.info('Finish validation process in epoch {} at {}, mean validation loss: {:.8f}'.format(epoch + 1, datetime.now().strftime("%Y-%m-%d %H:%M:%S"), mean_val_loss))
end_time = time.time()
logger.info('Epoch {} finished in {:.2f} seconds.'.format(epoch + 1, end_time - start_time))
```
请注意,这里假设您已经定义了 logger、to_device()、datetime、torch、numpy、time 等必要的库和函数。此外,由于您没有提供完整的代码,因此我可能需要进行一些假设和推测。
阅读全文