基于TensorFlow编写transformer代码示例
时间: 2023-10-17 13:03:04 浏览: 165
以下是基于TensorFlow编写的Transformer代码示例:
```python
import tensorflow as tf
from tensorflow.keras import layers
class MultiHeadSelfAttention(layers.Layer):
def __init__(self, embed_dim, num_heads):
super(MultiHeadSelfAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
if embed_dim % num_heads != 0:
raise ValueError(f"embed_dim {embed_dim} should be divisible by num_heads {num_heads}")
self.projection_dim = embed_dim // num_heads
self.query_dense = layers.Dense(embed_dim)
self.key_dense = layers.Dense(embed_dim)
self.value_dense = layers.Dense(embed_dim)
self.combine_heads = layers.Dense(embed_dim)
def attention(self, query, key, value):
score = tf.matmul(query, key, transpose_b=True)
dim_key = tf.cast(tf.shape(key)[-1], tf.float32)
scaled_score = score / tf.math.sqrt(dim_key)
weights = tf.nn.softmax(scaled_score, axis=-1)
output = tf.matmul(weights, value)
return output, weights
def separate_heads(self, x, batch_size):
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.projection_dim))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, inputs):
batch_size = tf.shape(inputs)[0]
query = self.query_dense(inputs)
key = self.key_dense(inputs)
value = self.value_dense(inputs)
query = self.separate_heads(query, batch_size)
key = self.separate_heads(key, batch_size)
value = self.separate_heads(value, batch_size)
attention, weights = self.attention(query, key, value)
attention = tf.transpose(attention, perm=[0, 2, 1, 3])
concat_attention = tf.reshape(attention, (batch_size, -1, self.embed_dim))
output = self.combine_heads(concat_attention)
return output
class TransformerBlock(layers.Layer):
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):
super(TransformerBlock, self).__init__()
self.att = MultiHeadSelfAttention(embed_dim, num_heads)
self.ffn = tf.keras.Sequential(
[layers.Dense(ff_dim, activation="relu"), layers.Dense(embed_dim)]
)
self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = layers.Dropout(rate)
self.dropout2 = layers.Dropout(rate)
def call(self, inputs, training):
attn_output = self.att(inputs)
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layernorm1(inputs + attn_output)
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output, training=training)
out2 = self.layernorm2(out1 + ffn_output)
return out2
class TokenAndPositionEmbedding(layers.Layer):
def __init__(self, maxlen, vocab_size, embed_dim):
super(TokenAndPositionEmbedding, self).__init__()
self.token_embedding = layers.Embedding(input_dim=vocab_size, output_dim=embed_dim)
self.position_embedding = layers.Embedding(input_dim=maxlen, output_dim=embed_dim)
def call(self, x):
maxlen = tf.shape(x)[-1]
positions = tf.range(start=0, limit=maxlen, delta=1)
positions = self.position_embedding(positions)
x = self.token_embedding(x)
return x + positions
class TransformerModel(tf.keras.Model):
def __init__(self, maxlen, vocab_size, embed_dim, num_heads, ff_dim, num_layers):
super(TransformerModel, self).__init__()
self.embedding = TokenAndPositionEmbedding(maxlen, vocab_size, embed_dim)
self.transformer_blocks = [TransformerBlock(embed_dim, num_heads, ff_dim) for _ in range(num_layers)]
self.dropout = layers.Dropout(0.1)
self.dense = layers.Dense(vocab_size, activation="softmax")
def call(self, inputs, training):
x = self.embedding(inputs)
for transformer_block in self.transformer_blocks:
x = transformer_block(x, training)
x = self.dropout(x, training)
x = self.dense(x)
return x
```
这是一个基于Transformer的语言模型,使用了多头自注意力机制和前馈神经网络等内容,可以用于文本生成或者机器翻译等任务。
阅读全文