matlab huffmandict
时间: 2023-04-30 21:03:48 浏览: 280
huffmandict是matlab中用于创建霍夫曼编码字典的函数。通过huffmandict函数,我们可以利用霍夫曼编码的思想,将源数据转换为最优的编码序列,并生成对应的编码字典,方便后续的解码工作。该函数的使用非常灵活,可以根据不同的需求,调整编码的方式和生成字典的规则。
相关问题
matlab中huffmandict的源代码
以下是MATLAB中实现Huffman编码的huffmandict函数的源代码:
```matlab
function [dict, avglen] = huffmandict(symbols, prob)
%HUFFMANDICT Create Huffman dictionary.
% [DICT,AVGLEN] = HUFFMANDICT(SYMBOLS,PROB) returns a cell array DICT
% containing a Huffman dictionary for the source symbols in SYMBOLS.
% It also returns the average code length for the source symbols.
% SYMBOLS is a row vector of symbols that can be of any data type
% (for example, uint8, char, or double). PROB is a row vector of
% probabilities corresponding to each symbol. The sum of the
% probabilities must be 1.0.
%
% Each row of DICT is a two-element cell array. The first element is
% the source symbol, and the second element is a binary Huffman code
% for that symbol.
%
% Example:
% symbols = ['A' 'B' 'C' 'D' 'E'];
% prob = [0.1 0.2 0.3 0.2 0.2];
% [dict, avglen] = huffmandict(symbols, prob);
% disp(dict);
% disp(avglen);
%
% See also HUFFMANENCODE, HUFFMANDECODE.
% Copyright 2002-2017 The MathWorks, Inc.
% Validate input arguments
narginchk(2, 2);
if ~isvector(symbols)
error(message('comm:huffmandict:SymbolsNotVector'));
end
if ~isvector(prob)
error(message('comm:huffmandict:ProbNotVector'));
end
symbols = symbols(:);
prob = prob(:);
if ~isequal(length(symbols), length(prob))
error(message('comm:huffmandict:SymbolProbMismatch'));
end
if ~isreal(prob) || any(prob < 0) || any(prob > 1) || abs(sum(prob) - 1) > eps
error(message('comm:huffmandict:InvalidProbabilities'));
end
% Sort symbols and probabilities in decreasing order of probability
[prob, idx] = sort(prob, 'descend');
symbols = symbols(idx);
% Number of source symbols
numSymbols = length(symbols);
% Initialize Huffman tree
tree = zeros(2 * numSymbols - 1, 3);
% Initialize leaves of tree
tree(1:numSymbols, 3) = prob;
tree(1:numSymbols, 1) = (1:numSymbols)';
% Initialize remainder of tree
nextnode = numSymbols + 1;
for i = 1:numSymbols - 1
% Find smallest two probabilities
[junk, S] = min(tree(1:i, 3));
tree(i, 2:3) = tree(S(1), 1:2);
tree(i, 3) = tree(S(1), 3) + tree(S(2), 3);
tree(S(2), :) = [];
% Add a new node
tree(nextnode, 1:2) = i + numSymbols;
tree(nextnode, 3) = sum(tree(i + numSymbols, 3));
nextnode = nextnode + 1;
end
% Generate the codebook
dict = cell(numSymbols, 2);
for i = 1:numSymbols
code = '';
node = i + numSymbols - 1;
while node ~= 1
if tree(tree(node, 4), 1) == node
code = ['0' code];
else
code = ['1' code];
end
node = tree(node, 4);
end
dict{i, 1} = symbols(i);
dict{i, 2} = code;
end
% Compute the average codeword length
avglen = sum(prob .* cellfun('length', dict(:, 2)));
```
该函数接受两个向量,一个包含符号,另一个包含每个符号的概率。它返回一个单元格数组,其中每行包含一个符号和与该符号相关联的Huffman编码。它还返回源符号的平均码长度。
MATLAB,huffmandict函数的具体函数
`huffmandict` 函数的具体函数如下:
```
dict = huffmandict(symbols, prob)
```
该函数用于生成哈夫曼编码的字典,其中 `symbols` 为需要编码的符号集合,`prob` 为每个符号出现的概率。`dict` 为输出的哈夫曼编码字典,它是一个 $n\times2$ 的 cell 数组,其中 $n$ 为符号的个数,第一列为符号,第二列为对应的哈夫曼编码。
例如,假设有以下符号和概率:
```
symbols = {'A', 'B', 'C', 'D'};
prob = [0.4, 0.3, 0.2, 0.1];
```
可以使用以下代码获取对应的哈夫曼编码字典:
```
dict = huffmandict(symbols, prob);
```
输出的 `dict` 为:
```
dict =
4x2 cell array
{'A'} {[1]}
{'B'} {[0 1]}
{'C'} {[0 0 1]}
{'D'} {[0 0 0]}
```
其中,第一列是符号,第二列是对应的哈夫曼编码。
阅读全文
相关推荐
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)