start_time = time.time() model.train() param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}] # optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate) optimizer = BertAdam(optimizer_grouped_parameters, lr=config.learning_rate, warmup=0.05, t_total=len(train_iter) * config.num_epochs) total_batch = 0 # 记录进行到多少batch dev_best_loss = float('inf') last_improve = 0 # 记录上次验证集loss下降的batch数 flag = False # 记录是否很久没有效果提升 model.train()
时间: 2024-04-28 10:23:33 浏览: 126
这段代码是用来进行模型训练的。具体来说,它包括了以下步骤:
1. 记录开始时间。
2. 将模型设置为训练模式。
3. 获取模型中的参数。
4. 根据参数名称来设置不同的权重衰减系数。
5. 使用BertAdam优化器来优化模型参数。
6. 记录训练过程中的一些指标,如总批次数、验证集上的最佳loss、上次验证集loss下降的批次数、是否很久没有提升等。
7. 将模型设置为训练模式。
相关问题
#LSTM #from tqdm import tqdm import os os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128" import time #GRUmodel=GRU(feature_size,hidden_size,num_layers,output_size) #GRUmodel=GRUAttention(7,5,1,2).to(device) model=lstm(7,20,2,1).to(device) model.load_state_dict(torch.load("LSTMmodel1.pth",map_location=device))#pytorch 导入模型lstm(7,20,4,1).to(device) loss_function=nn.MSELoss() lr=[] start=time.time() start0 = time.time() optimizer=torch.optim.Adam(model.parameters(),lr=0.5) scheduler = ReduceLROnPlateau(optimizer, mode='min',factor=0.5,patience=50,cooldown=60,min_lr=0,verbose=False) #模型训练 trainloss=[] epochs=2000 best_loss=1e10 for epoch in range(epochs): model.train() running_loss=0 lr.append(optimizer.param_groups[0]["lr"]) #train_bar=tqdm(train_loader)#形成进度条 for i,data in enumerate(train_loader): x,y=data optimizer.zero_grad() y_train_pred=model(x) loss=loss_function(y_train_pred,y.reshape(-1,1)) loss.backward() optimizer.step() running_loss+=loss.item() trainloss.append(running_loss/len(train_loader)) scheduler.step(trainloss[-1]) #模型验证 model.eval() validation_loss=0 validationloss=[] with torch.no_grad(): #validation_bar=tqdm(validation_loader) for j,data in enumerate(validation_loader): x_validation,y_validation=data y_validation_pred=model(x_validation) validationrunloss=loss_function(y_validation_pred,y_validation.reshape(-1,1)) validation_loss+=validationrunloss #validation_bar.desc="loss:{:.4f}".format(validation_loss/len(validation_loader)) validation_loss=validation_loss/len(validation_loader) validationloss.append(validation_loss) end=time.time() print("learningrate:%.5f,epoch:[%5d/%5d]time:%.2fs, train_loss:%.5f,validation_loss:%.6f" % (lr[-1],epoch, epochs, (end - start),trainloss[-1],validationloss[-1])) start = time.time() if validationloss[-1]<best_loss: best_loss=validationloss[-1] torch.save(model.state_dict,"LSTMmodel1.pth") #torch.save(model.state_dict,"LSTMmodel.pth") end0 = time.time() print("the total training time is :%.2fmin" % ((end0 - start0) / 60)) 报错:Expected state_dict to be dict-like, got <class 'method'>.
这个错误通常是由于在保存模型状态时出现问题导致的。在您的代码中,您使用了 `torch.save(model.state_dict,"LSTMmodel1.pth")` 来保存模型的状态字典,但是这里的 `state_dict` 后面应该是一个方法而不是一个函数。
要解决这个问题,您需要将 `torch.save()` 函数中的 `model.state_dict` 改为 `model.state_dict()`,以调用该方法并获取模型的状态字典。正确的代码应该是:
```python
torch.save(model.state_dict(), "LSTMmodel1.pth")
```
请注意括号的位置,确保调用了 `state_dict()` 方法并将其结果传递给 `torch.save()` 函数。这样可以确保正确地保存了模型的状态字典。
请尝试修改您的代码并再次运行,看看是否能够解决这个问题。如果问题仍然存在,请提供更多的代码细节,我会尽力帮助您解决问题。
阅读全文