解释下面代码: // 打印哈夫曼树 void printTree(HuffmanNode* node, int depth = 0) { if (node) { printTree(node->right, depth + 1); for (int i = 0; i < depth; i++) { cout << " "; } if (node->isLeaf()) { cout << node->ch << ":" << node->freq << endl; } else { cout << "*:" << node->freq << endl; } printTree(node->left, depth + 1); } }

时间: 2024-02-14 08:12:37 浏览: 36
这段代码用于打印哈夫曼树,即将哈夫曼编码的过程可视化。具体解释如下: 1. 接收一个指向哈夫曼树根节点的指针 node,以及一个表示当前深度的整数 depth,默认值为 0。 2. 首先递归打印右子树,即调用 printTree(node->right, depth + 1)。 3. 然后使用 for 循环打印当前节点的深度,即输出 depth 个空格。 4. 判断当前节点是否为叶子节点,如果是,则输出节点的字符和出现频率,即 node->ch 和 node->freq;如果不是,则输出 * 和节点的出现频率,即 * 和 node->freq。 5. 最后递归打印左子树,即调用 printTree(node->left, depth + 1)。 需要注意的是,这段代码使用了哈夫曼树节点类 HuffmanNode 的 isLeaf() 函数,用于判断当前节点是否为叶子节点。如果是叶子节点,即该节点代表一个字符,则 isLeaf() 函数返回 true,否则返回 false。
相关问题

对以下代码进行细致注释#pragma once #include <map> #include <iomanip> //哈夫曼树存储结构 struct HuffmanNode { int weight; //结点字符和权值 int parent, lchild, rchild; }; class Huffman { private: map<char, int> code; map<string, char> sc_code; map<char, string> cs_code; const int MAXWEIGHT = 2147483647; HuffmanNode* hf = NULL; int N = 0; public: //无参构造 Huffman(); //初始化 void Initialization(); //选择 void select(HuffmanNode*& hf, int n, int& s1, int& s2); //创建Huffman树 void createHuffmanTree(HuffmanNode*& hf, int n); //Huffman编码实现 char** createHuffmanCode(HuffmanNode*& hf, int n); //编码 void Encoding(); //译码 void Decoding(); //印代码文件 void Print(); //印哈夫曼树 void TreePrinting(); };

// 防止头文件重复引用 #pragma once // 使用map需要引入的头文件 #include <map> // 用于输出格式化的头文件 #include <iomanip> // 定义哈夫曼树的结构体 struct HuffmanNode { int weight; // 结点字符和权值 int parent, lchild, rchild; // 结点父节点、左孩子节点和右孩子节点 }; // 定义哈夫曼编码的类 class Huffman { private: // 原始字符 -> 权值的映射 map<char, int> code; // 压缩后的二进制位 -> 原始字符的映射 map<string, char> sc_code; // 原始字符 -> 压缩后的二进制位的映射 map<char, string> cs_code; // 定义最大权值 const int MAXWEIGHT = 2147483647; // 定义哈夫曼树的指针 HuffmanNode* hf = NULL; // 定义哈夫曼树的结点数目 int N = 0; public: // 无参构造函数 Huffman(); // 初始化哈夫曼编码 void Initialization(); // 选择权值最小的两个结点 void select(HuffmanNode*& hf, int n, int& s1, int& s2); // 创建哈夫曼树 void createHuffmanTree(HuffmanNode*& hf, int n); // 实现哈夫曼编码 char** createHuffmanCode(HuffmanNode*& hf, int n); // 编码 void Encoding(); // 译码 void Decoding(); // 输出压缩后的代码文件 void Print(); // 输出哈夫曼树的结构 void TreePrinting(); };

每句代码含义:HuffmanNode* buildHuffmanTree(const unordered_map<char, int>& frequencyTable) {//根据字符频率表 frequencyTable 构建哈夫曼树 priority_queue<HuffmanNode*, vector<HuffmanNode*>, Compare> pq; // 创建叶节点并加入优先队列pq for (const auto& pair : frequencyTable) { pq.push(new HuffmanNode(pair.first, pair.second)); } // 处理特殊情况,只有一个字符时,返回根节点 if (pq.size() == 1) { HuffmanNode* root = pq.top(); pq.pop(); pq.push(new HuffmanNode('\0', root->frequency)); pq.top()->left = root; } // 逐步合并节点,直到只剩下一个根节点 while (pq.size() > 1) { HuffmanNode* left = pq.top(); pq.pop(); HuffmanNode* right = pq.top(); pq.pop(); HuffmanNode* newNode = new HuffmanNode('\0', left->frequency + right->frequency); newNode->left = left; newNode->right = right; pq.push(newNode); } return pq.top(); }

这段代码是实现哈夫曼编码的一部分,主要功能是根据字符频率表构建哈夫曼树。下面是每句代码的含义: 1. `HuffmanNode* buildHuffmanTree(const unordered_map<char, int>& frequencyTable)`:定义一个名为`buildHuffmanTree`的函数,返回值为指向`HuffmanNode`类型的指针,接受一个`const unordered_map<char, int>&`类型的参数`frequencyTable`,表示字符频率表。 2. `priority_queue<HuffmanNode*, vector<HuffmanNode*>, Compare> pq`:定义一个名为`pq`的优先队列,其中元素类型为指向`HuffmanNode`类型的指针,队列中元素的比较方式由`Compare`类实现。 3. `for (const auto& pair : frequencyTable) { pq.push(new HuffmanNode(pair.first, pair.second)); }`:遍历字符频率表的每一项,依次创建叶节点,并将其加入优先队列。 4. `if (pq.size() == 1) { HuffmanNode* root = pq.top(); pq.pop(); pq.push(new HuffmanNode('\0', root->frequency)); pq.top()->left = root; }`:处理特殊情况,即字符频率表中只有一个字符的情况。此时直接返回根节点。 5. `while (pq.size() > 1) { HuffmanNode* left = pq.top(); pq.pop(); HuffmanNode* right = pq.top(); pq.pop(); HuffmanNode* newNode = new HuffmanNode('\0', left->frequency + right->frequency); newNode->left = left; newNode->right = right; pq.push(newNode); }`:逐步合并节点,直到只剩下一个根节点。每次从优先队列中取出频率最小的两个叶节点,合并为一个新的节点,再将其加入优先队列。最终优先队列中只剩下一个根节点。 6. `return pq.top();`:返回优先队列中的根节点,即哈夫曼树的根节点。

相关推荐

以下代码用C++实现了哈夫曼树的编码的过程,请解释每一步实现了什么操作,给出详细注释 class HuffmanNode { public: char symbol; unsigned long codeword, freq; unsigned int runLen, codewordLen; HuffmanNode* left, * right; HuffmanNode() { left = right = 0; } HuffmanNode(char s, unsigned long f, unsigned int r, HuffmanNode* lt = 0, HuffmanNode* rt = 0) { symbol = s; freq = f; runLen = r; left = lt; right = rt; } }; class ListNode { public: HuffmanNode* tree; ListNode* next, * prev; ListNode() { next = prev = 0; } ListNode(ListNode* p, ListNode* n) { prev = p; next = n; } }; void HuffmanCoding::encode(ifstream& fIn) { unsigned long packCnt = 0, hold, maxPack = bytes * bits, pack = 0; char ch, ch2; int bitsLeft, runLength; for (fIn.get(ch); !fIn.eof();) { for (runLength = 1, fIn.get(ch2); !fIn.eof() && ch2 == ch; runLength++) fIn.get(ch2); HuffmanNode* p = chars[(unsigned char)ch]; for (p = chars[(unsigned char)ch]; p != 0 && runLength != p->runLen; p = p->right); if (p == 0) cout<<("A promble in encode()"); if (p->codewordLen < maxPack - packCnt) { pack = (pack << p->codewordLen) | p->codeword; pack += p->codewordLen; } else { bitsLeft = maxPack - packCnt; pack <<= bitsLeft; if (bitsLeft != p->codewordLen) { hold = p->codeword; hold >>= p->codewordLen - bitsLeft; pack |= hold; } else pack |= hold; output(pack); if (bitsLeft != p->codewordLen) { pack = p->codeword; packCnt = maxPack - (p->codewordLen - bitsLeft); packCnt = p->codewordLen - bitsLeft; } else packCnt = 0; } ch = ch2; } if (packCnt != 0) { pack <<= maxPack - packCnt; output(pack); } }

最新推荐

recommend-type

C语言实现哈夫曼树的构建

下面是哈夫曼树的构建与C语言实现的相关知识点: 一、哈夫曼树的定义 哈夫曼树是一种特殊的二叉树,它的权值越小,越靠近根节点。哈夫曼树的构建是数据压缩和编码的重要组件。 二、哈夫曼树的构建算法 哈夫曼...
recommend-type

C++实现哈夫曼树简单创建与遍历的方法

哈夫曼树,又称为最优二叉树或最小带权路径长度树,是一种特殊的二叉树,广泛应用于数据压缩、编码等领域。它具有以下特性:所有叶子节点都在最底层且位于最左边,非叶子节点没有左孩子或者没有右孩子,且树中不存在...
recommend-type

哈夫曼编码-译码器课程设计报告.docx

设计一个利用哈夫曼算法的编码和译码系统,重复地显示并处理以下项目,直到选择退出为止。 基本要求: (1)将权值数据存放在数据文件(文件名为data.txt,位于执行程序的当前目录中) (2)分别采用动态和静态存储...
recommend-type

数据结构综合课设设计一个哈夫曼的编/译码系统.docx

利用已建好的哈夫曼树将文件CodeFile中的代码进行译码,结果存入文件TextFile中。 P:打印代码文件(Print)。将文件CodeFile以紧凑格式显示在终端上,每行 50个代码。同时将此字符形式的编码文件写入文件CodePrin中...
recommend-type

数据结构课程设计哈夫曼树编译码器报告.doc

开发环境:VC++ 6.0 (1) I:初始化(Initialization)。 (2) E:编码(Encoding)。 (3) D:译码(Decoding)。 (4) P:打印代码文件...(5)T:打印哈夫曼树(HuffmanTreePrint)。 (6)Q:退出程序(Quit)。
recommend-type

GO婚礼设计创业计划:技术驱动的婚庆服务

"婚礼GO网站创业计划书" 在创建婚礼GO网站的创业计划书中,创业者首先阐述了企业的核心业务——GO婚礼设计,专注于提供计算机软件销售和技术开发、技术服务,以及与婚礼相关的各种服务,如APP制作、网页设计、弱电工程安装等。企业类型被定义为服务类,涵盖了一系列与信息技术和婚礼策划相关的业务。 创业者的个人经历显示了他对行业的理解和投入。他曾在北京某科技公司工作,积累了吃苦耐劳的精神和实践经验。此外,他在大学期间担任班长,锻炼了团队管理和领导能力。他还参加了SYB创业培训班,系统地学习了创业意识、计划制定等关键技能。 市场评估部分,目标顾客定位为本地的结婚人群,特别是中等和中上收入者。根据数据显示,广州市内有14家婚庆公司,该企业预计能占据7%的市场份额。广州每年约有1万对新人结婚,公司目标接待200对新人,显示出明确的市场切入点和增长潜力。 市场营销计划是创业成功的关键。尽管文档中没有详细列出具体的营销策略,但可以推断,企业可能通过线上线下结合的方式,利用社交媒体、网络广告和本地推广活动来吸引目标客户。此外,提供高质量的技术解决方案和服务,以区别于竞争对手,可能是其市场差异化策略的一部分。 在组织结构方面,未详细说明,但可以预期包括了技术开发团队、销售与市场部门、客户服务和支持团队,以及可能的行政和财务部门。 在财务规划上,文档提到了固定资产和折旧、流动资金需求、销售收入预测、销售和成本计划以及现金流量计划。这表明创业者已经考虑了启动和运营的初期成本,以及未来12个月的收入预测,旨在确保企业的现金流稳定,并有可能享受政府对大学生初创企业的税收优惠政策。 总结来说,婚礼GO网站的创业计划书详尽地涵盖了企业概述、创业者背景、市场分析、营销策略、组织结构和财务规划等方面,为初创企业的成功奠定了坚实的基础。这份计划书显示了创业者对市场的深刻理解,以及对技术和婚礼行业的专业认识,有望在竞争激烈的婚庆市场中找到一席之地。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【基础】PostgreSQL的安装和配置步骤

![【基础】PostgreSQL的安装和配置步骤](https://img-blog.csdnimg.cn/direct/8e80154f78dd45e4b061508286f9d090.png) # 2.1 安装前的准备工作 ### 2.1.1 系统要求 PostgreSQL 对系统硬件和软件环境有一定要求,具体如下: - 操作系统:支持 Linux、Windows、macOS 等主流操作系统。 - CPU:推荐使用多核 CPU,以提高数据库处理性能。 - 内存:根据数据库规模和并发量确定,一般建议 8GB 以上。 - 硬盘:数据库文件和临时文件需要占用一定空间,建议预留足够的空间。
recommend-type

字节跳动面试题java

字节跳动作为一家知名的互联网公司,在面试Java开发者时可能会关注以下几个方面的问题: 1. **基础技能**:Java语言的核心语法、异常处理、内存管理、集合框架、IO操作等是否熟练掌握。 2. **面向对象编程**:多态、封装、继承的理解和应用,可能会涉及设计模式的提问。 3. **并发编程**:Java并发API(synchronized、volatile、Future、ExecutorService等)的使用,以及对并发模型(线程池、并发容器等)的理解。 4. **框架知识**:Spring Boot、MyBatis、Redis等常用框架的原理和使用经验。 5. **数据库相
recommend-type

微信行业发展现状及未来发展趋势分析

微信行业发展现状及未来行业发展趋势分析 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信月活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。 微信作为流量枢纽,已经成为移动互联网的基础设施,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 中国的整体移动互联网人均单日使用时长已经较高水平。18Q1中国移动互联网的月度总时长达到了77千亿分钟,环比17Q4增长了14%,单人日均使用时长达到了273分钟,环比17Q4增长了15%。而根据抽样统计,社交始终占据用户时长的最大一部分。2018年3月份,社交软件占据移动互联网35%左右的时长,相比2015年减少了约10pct,但仍然是移动互联网当中最大的时长占据者。 争夺社交软件份额的主要系娱乐类App,目前占比达到约32%左右。移动端的流量时长分布远比PC端更加集中,通常认为“搜索下載”和“网站导航”为PC时代的流量枢纽,但根据统计,搜索的用户量约为4.5亿,为各类应用最高,但其时长占比约为5%左右,落后于网络视频的13%左右位于第二名。PC时代的网络社交时长占比约为4%-5%,基本与搜索相当,但其流量分发能力远弱于搜索。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。