RuntimeError: running_mean should contain 64 elements not 128
时间: 2023-11-22 08:51:48 浏览: 290
这个错误通常是由于使用了错误大小的输入张量导致的。在 PyTorch 中,BatchNorm2d 层中的 running_mean 和 running_var 是基于输入张量的深度(即通道数)的。因此,如果你的输入张量的深度为 128,而你在 BatchNorm2d 层中设置了 num_features=64,则会出现上述错误。
请确保在 BatchNorm2d 层中设置 num_features 的值与你的输入张量的深度相同。如果你需要使用不同大小的输入张量,则必须相应地修改 BatchNorm2d 层的 num_features 参数。
相关问题
RuntimeError: running_mean should contain 1 elements not 1024
这个错误通常发生在使用PyTorch实现的卷积神经网络中,可能是因为输入的张量形状与期望的不一致,导致模型无法正确地计算。在这种情况下,最好检查输入张量的形状和卷积层的参数设置是否正确。特别地,该错误可能与批量归一化层有关,因为它需要正确的输入尺寸。如果您正在使用批量归一化,请检查是否正确设置了num_features参数,以确保它与输入张量的特征维度相匹配。
RuntimeError: running_mean should contain 1 elements not 512
这个错误通常是在使用 PyTorch 进行深度学习时出现的。它表明运行时的均值(running_mean)应该只包含一个元素,但是它却包含了 512 个元素。这个问题通常是由于在定义模型时,输入的维度不正确而导致的。可能原因是输入数据的形状不对,或者是在定义网络层时出现了一些错误。请检查你的模型定义和输入数据的维度是否正确,以解决这个问题。
阅读全文