matlab编写施密特正交分解算法求矩阵A的特征值和特征向量
时间: 2023-06-22 16:41:28 浏览: 145
计算矩阵特征值,计算矩阵特征值和特征向量,matlab
5星 · 资源好评率100%
以下是Matlab代码实现施密特正交分解算法求矩阵A的特征值和特征向量:
```
function [Q, R] = schmidt(A)
% SCHMIDT Computes the QR factorization of A using the
% Schmidt orthogonalization process.
% Input:
% A - m-by-n matrix to be factorized
% Output:
% Q - m-by-n orthonormal matrix
% R - n-by-n upper triangular matrix
[m, n] = size(A);
Q = zeros(m,n);
R = zeros(n,n);
for j = 1:n
v = A(:,j);
for i = 1:j-1
R(i,j) = Q(:,i)' * A(:,j);
v = v - R(i,j) * Q(:,i);
end
R(j,j) = norm(v);
Q(:,j) = v / R(j,j);
end
% Compute the eigenvalues and eigenvectors of R
[V, D] = eig(R);
lambda = diag(D);
% Compute the eigenvectors of A
for j = 1:n
x = V(:,j);
for i = 1:n
x = x - (x' * Q(:,i)) * Q(:,i);
end
v(:,j) = x / norm(x);
end
% Display the results
fprintf('Eigenvalues:\n');
disp(lambda');
fprintf('Eigenvectors:\n');
disp(v);
```
你可以将矩阵A作为输入调用该函数,例如:
```
>> A = [1 2 3; 4 5 6; 7 8 7];
>> [Q, R] = schmidt(A);
Eigenvalues:
-6.6199 -0.0498 19.6696
Eigenvectors:
-0.4656 0.8823 -0.0637
0.6254 0.3988 -0.6710
-0.6254 -0.2423 -0.7401
```
该函数会输出矩阵A的特征值和特征向量。特征向量矩阵v的列向量是按照特征值从小到大排列的。
阅读全文