python语言:输入一个正整数 如果该数为奇数 则输出其3次方的值 如果该数为偶数 则输出其平方根

时间: 2023-03-28 22:00:20 浏览: 304
输入一个正整数,如果该数为奇数,则输出其3次方的值,如果该数为偶数,则输出其平方根。 回答:好的,这个问题很简单。可以使用Python的条件语句和数学库来实现。代码如下: ``` import math num = int(input("请输入一个正整数:")) if num % 2 == : result = math.sqrt(num) else: result = num ** 3 print("结果为:", result) ``` 如果输入的数为奇数,则输出该数的3次方;如果输入的数为偶数,则输出该数的平方根。
相关问题

本题的目标很简单,就是判断一个给定的正整数是否素数。 输入格式: 输入在第一行给出一个正整数n(≤ 10),随后n行,每行给出一个小于2 31 的需要判断的正整数。 输出格式: 对每个需要判断的正整数,如果它是素数,则在一行中输出yes,否则输出no。

### 回答1: 这是一个判断正整数是否为素数的问题。 输入格式:第一行给出一个正整数n(n ≤ 10),表示需要判断的正整数的个数。接下来的n行,每行给出一个小于2^31的正整数。 输出格式:对于每个需要判断的正整数,如果它是素数,则输出"yes",否则输出"no"。 题目要求判断一个给定的正整数是否为素数。输入的第一行为正整数n,表示需要判断的正整数个数,随后n行每行给出一个需要判断的正整数,保证输入的每个数都小于2的31次方。对于每个需要判断的正整数,如果它是素数,则输出yes,否则输出no。 素数是指只能被1和自身整除的正整数,除了1和2以外的素数都是奇数,因此可以只考虑奇数是否为素数。 判断一个正整数是否为素数可以从2开始,依次除以每个小于该数的正整数,如果都无法整除,则该数为素数。由于判断素数的算法需要遍历每个小于该数的正整数,时间复杂度较高,因此可以使用优化算法,如试除法、埃氏筛法或欧拉筛法等。 下面是一个用Python实现的简单程序,采用试除法来判断一个正整数是否为素数: ```python import math def is_prime(num): if num == 1: return False elif num == 2: return True elif num % 2 == 0: return False else: for i in range(3, int(math.sqrt(num))+1, 2): if num % i == 0: return False return True n = int(input()) for i in range(n): num = int(input()) if is_prime(num): print("yes") else: print("no") ``` 该程序首先定义了一个判断素数的函数is_prime(num),判断方法是从3开始,依次遍历每个奇数,如果该奇数可以整除num,则num不是素数;如果遍历完所有小于等于num开方的奇数都无法整除num,则num是素数。 接着,程序输入一个正整数n,表示需要判断的正整数个数,随后n行每行输入一个需要判断的正整数num,对于每个num,如果它是素数,则输出yes,否则输出no。 好的,这是一个判断一个正整数是否为素数的问题。输入格式:第一行输入一个正整数n(≤10),接下来n行每行输入一个需要判断的小于2^31的正整数。输出格式:对于每个需要判断的正整数,如果它是素数则输出“yes”,否则输出“no”。 题目要求判断给定的正整数是否是素数。 输入格式:第一行一个正整数n,表示需要判断的正整数的个数;接下来n行,每行一个需要判断的正整数。 输出格式:对于每个需要判断的正整数,如果它是素数,则输出yes,否则输出no。 判断一个数是否为素数的方法有很多种,以下是一种常见的方法: 1. 如果该数小于2,直接判定为不是素数; 2. 如果该数能被2整除,直接判定为不是素数; 3. 如果该数不能被2整除,那么从3开始到该数的平方根的整数范围内,如果该数能被其中任意一个整数整除,则判定为不是素数; 4. 如果该数不能被范围内的任何一个整数整除,则判定为素数。 下面是一个实现该算法的 Python 代码示例: ```python import math def is_prime(n): if n < 2: return False if n == 2: return True if n % 2 == 0: return False for i in range(3, int(math.sqrt(n))+1, 2): if n % i == 0: return False return True n = int(input()) for i in range(n): x = int(input()) if is_prime(x): print("yes") else: print("no") ``` 该代码首先定义了一个名为 is_prime 的函数,接受一个参数 n,返回该数是否为素数的布尔值。然后读入需要判断的数的个数 n,依次读入每个需要判断的数 x,调用 is_prime 函数进行判断,输出结果。这道题的目标很简单,就是判断给定的正整数是否是素数。输入格式:第一行是一个正整数n(n ≤ 10),表示有n个待判断的正整数。接下来n行,每行给出一个需要判断的小于2^31的正整数。输出格式:对于每个需要判断的正整数,如果它是素数,则输出"yes",否则输出"no"。题目要求判断给定的正整数是否为素数。输入格式:第一行一个正整数n(n≤10),表示有n个需要判断的正整数;接下来n行,每行一个需要判断的正整数(小于2的31次方)。输出格式:对于每个需要判断的正整数,如果它是素数,则输出“yes”,否则输出“no”。题目要求判断一个给定的正整数是否素数,输入格式是第一行一个正整数n,表示接下来有n行需要判断的正整数。输出格式是对于每个需要判断的正整数,如果它是素数则输出yes,否则输出no。 素数是指除了1和它本身之外,不能被其他正整数整除的数。判断一个数是否为素数,可以从2开始到该数的平方根进行循环,如果存在一个能整除该数的数,则该数不是素数,否则是素数。 下面是用Python编写的实现代码: ```python import math def is_prime(n): if n <= 1: return False for i in range(2, int(math.sqrt(n))+1): if n % i == 0: return False return True n = int(input()) for i in range(n): num = int(input()) if is_prime(num): print("yes") else: print("no") ``` 首先定义一个函数`is_prime`用于判断一个数是否为素数。如果该数小于等于1,直接返回False;然后从2开始到该数的平方根进行循环,如果存在一个能整除该数的数,则该数不是素数,返回False;如果循环结束都没有找到能整除该数的数,则返回True。 接着读入输入的第一行n,表示接下来有n行需要判断的正整数。然后循环n次,每次读入一个正整数num,调用`is_prime`函数判断该数是否为素数,如果是素数则输出"yes",否则输出"no"。题目要求判断给定的正整数是否是素数,输入包括n个正整数,每行一个,均小于2的31次方。如果是素数则输出yes,否则输出no。 素数的定义是只能被1和自身整除的数,所以可以采用试除法来判断一个数是否是素数。即将待判断的数从2到sqrt(n)进行除法判断,若都无法整除,则该数为素数。 具体实现可以用以下代码: ```python import math def is_prime(num): if num <= 1: return False for i in range(2, int(math.sqrt(num))+1): if num % i == 0: return False return True n = int(input()) for i in range(n): num = int(input()) if is_prime(num): print("yes") else: print("no") ``` 以上代码中,is_prime函数用于判断一个数是否是素数。若该数小于等于1,则直接返回False;否则从2到sqrt(num)进行试除,若能整除则返回False,否则返回True。 主程序中首先输入n,表示接下来有n个数需要进行判断。然后循环n次,每次输入一个数,然后调用is_prime函数进行判断,输出yes或no。好的,这是一个判断正整数是否为素数的问题。输入包括n个小于2^31的正整数,每个数占一行,输出对于每个数,如果它是素数则输出"yes",否则输出"no"。 是的,本题的目标很简单,就是判断一个给定的正整数是否为素数。输入格式是第一行给出一个正整数n(≤10),随后n行,每行给出一个小于2^31的需要判断的正整数。输出格式应该是对每个需要判断的正整数,如果它是素数,则在一行中输出“yes”,否则输出“no”。 是的,这是一个简单的目标,如果输入的正整数小于2^31,则可以通过判断来确定它是否为素数,如果是,则输出yes,否则输出no。 是的,对于每个需要判断的正整数,如果它是素数,则输出yes,否则输出no。题目要求判断给定的正整数是否为素数。 素数是指只能被1和本身整除的数,比如2、3、5、7等。 输入格式为:第一行给出一个正整数n(n ≤ 10),表示接下来有n个需要判断的正整数。接下来的n行,每行给出一个小于2^31的正整数。 输出格式为:对于每个需要判断的正整数,如果它是素数,则在一行中输出"yes",否则输出"no"。 是的,本题的目标很简单,就是判断一个给定的正整数是否素数。输入格式是第一行给出一个正整数n(≤ 10),随后n行,每行给出一个小于2 31 的需要判断的正整数。输出格式是对每个需要判断的正整数,如果它是素数,则在一行中输出yes,否则输出no。题目要求判断给定的正整数是否为素数,输入包含n个正整数,每个正整数小于2的31次方。输出对于每个需要判断的正整数,如果是素数则输出yes,否则输出no。 素数是指除了1和本身外没有其他因数的数,比如2、3、5、7、11等都是素数。判断一个数是否为素数,可以使用试除法,即从2开始,一直到这个数的平方根,依次除以每个数,如果能够整除则不是素数,否则是素数。 下面是Python代码实现: ```python import math def is_prime(n): if n <= 1: return False for i in range(2, int(math.sqrt(n))+1): if n % i == 0: return False return True n = int(input()) for i in range(n): num = int(input()) if is_prime(num): print("yes") else: print("no") ``` 首先读入n,表示有n个需要判断的正整数。然后依次读入每个正整数,调用is_prime函数进行判断。如果是素数则输出"yes",否则输出"no"。以下是题目的中文翻译: 题目要求判断一个给定的正整数是否为素数。输入包含n+1行,第一行为一个正整数n(≤ 10),表示接下来有n个需要判断的正整数。接下来n行,每行给出一个小于2^31的需要判断的正整数。对于每个需要判断的正整数,如果它是素数,则输出“yes”,否则输出“no”。 简单来说,就是给定n个正整数,需要判断它们是否为素数,如果是素数则输出“yes”,否则输出“no”。其中,第一行给出了需要判断的正整数的个数n,接下来n行分别给出这n个正整数。以下是您需要的中文回复: 这道题的目标是判断给定的正整数是否为素数。输入包括n和n个需要判断的正整数。其中n表示需要判断的正整数的个数,每个正整数都需要判断是否为素数。 如果一个正整数除了1和它本身以外没有其他因子,那么它就是素数。因此,我们可以从2开始逐个判断该数是否可以被整除。如果能被整除,则说明它不是素数,否则它就是素数。 对于每个需要判断的正整数,如果它是素数,则输出"yes",否则输出"no"。好的,这是一道判断给定正整数是否为素数的题目。输入格式为:第一行给出一个正整数n(≤10),表示接下来有n个需要判断的正整数。随后n行,每行给出一个小于231的正整数。输出格式为:对于每个需要判断的正整数,如果它是素数,则输出yes;否则输出no。好的,以下是用中文回复: 题目要求判断给定的正整数是否为素数,输入格式为第一行一个正整数n(≤10),随后n行每行一个需要判断的小于231的正整数。输出格式为每行输出一个yes或no,表示对应的正整数是否为素数。 素数是指只能被1和本身整除的正整数,因此我们可以通过枚举每个正整数的因子来判断其是否为素数。具体地,对于一个大于1的正整数x,我们枚举从2到sqrt(x)的所有正整数i,如果存在i能够整除x,则x不是素数;否则x是素数。 我们可以使用一个函数is_prime(x)来实现这个功能,函数返回True表示x是素数,返回False表示x不是素数。对于每个需要判断的正整数,我们调用这个函数并输出结果即可。具体的Python代码实现如下:题目要求判断一组正整数是否为素数。输入的第一行为正整数n,表示接下来有n个需要判断的正整数,每行输入一个需要判断的正整数。要求判断的正整数均小于2的31次方。如果判断的正整数是素数,则输出yes,否则输出no。 素数是指只能被1和自身整除的正整数。判断素数的方法是,从2开始,逐一除以比它小的正整数,如果能被整除,则不是素数,否则就是素数。具体的判断过程可以通过循环实现。 以下是Python的实现代码: ```python import math # 判断一个正整数是否为素数 def is_prime(n): if n <= 1: return False for i in range(2, int(math.sqrt(n))+1): if n % i == 0: return False return True # 主程序 n = int(input()) for i in range(n): x = int(input()) if is_prime(x): print("yes") else: print("no") ``` 代码中用到了math模块中的sqrt函数,它用来计算一个数的平方根。由于素数的因子一定是小于等于它的平方根的,因此只需要判断2到sqrt(n)之间的正整数是否能整除n即可。题目要求判断给定的正整数是否为素数。输入格式为第一行一个正整数n(n≤10),代表需要判断的正整数个数,接下来n行每行一个需要判断的小于2^31的正整数。输出格式为对于每一个需要判断的正整数,如果它是素数,则输出yes,否则输出no。 素数即质数,指的是除了1和本身以外没有其他的因数的数。判断素数的方法很多,一种简单的方法是试除法,即从2到这个数的平方根之间的每一个数都去尝试去整除这个数,如果能整除,则这个数不是素数,否则是素数。 代码实现: ```python import math def is_prime(num): if num == 1: return False for i in range(2, int(math.sqrt(num)) + 1): if num % i == 0: return False return好的,我来用中文回答这个问题。 题目要求判断一个给定的正整数是否为素数,输入格式是第一行一个正整数n,表示有n个需要判断的正整数,接下来n行,每行给出一个需要判断的正整数,要求判断的正整数小于231。输出格式是对每个需要判断的正整数,如果它是素数,则输出yes,否则输出no。 素数指只能被1和本身整除的正整数,例如2、3、5、7、11等。我们可以使用常见的判断素数的方法:对于大于1的正整数n,如果n能被2到n-1之间的任意一个正整数整除,那么n就不是素数。如果n不能被2到n-1之间的任意一个正整数整除,那么n就是素数。 根据题目的输入格式,我们可以使用循环依次读入需要判断的正整数,然后判断每个正整数是否为素数,并输出结果。代码如下: ```python import math def is_prime(n): if n <= 1: return False for i in range(2, int(math.sqrt(n))+1): if n % i == 0: return False return True n = int(input()) for i in range(n): x = int(input()) if is_prime(x): print("yes") else: print("no") ``` 以上代码中,is_prime函数用于判断一个正整数是否为素数。在主程序中,首先读入需要判断的正整数个数n,然后依次读入n个正整数x,并使用is_prime函数判断x是否为素数,最后输出yes或no。题目要求判断给定的正整数是否为素数。输入格式为:第一行输入一个正整数n(≤10),表示接下来有n个需要判断的正整数;接下来n行每行输入一个小于231的正整数。输出格式为:对于每个需要判断的正整数,如果是素数则输出"yes",否则输出"no"。好的,我来用中文回答这个问题。 这个问题的目标很简单,就是判断一个给定的正整数是否是素数。具体来说,输入格式为:第一行输入一个正整数n(≤10),表示需要判断n个正整数。随后n行,每行输入一个小于231的正整数,表示需要判断的正整数。输出格式为:对于每个需要判断的正整数,如果它是素数,则输出yes;否则,输出no。好的,这道题目的要求是判断一些给定的正整数是否为素数。具体要求如下: 输入格式:第一行是一个正整数n(n≤10),表示需要判断的正整数的个数。接下来n行,每行输入一个小于231的正整数。 输出格式:对于每个需要判断的正整数,如果它是素数,则输出"yes",否则输出"no"。 判断素数的具体方法可以是:对于一个正整数n,从2到n-1逐个判断是否能被n整除。如果存在一个能被整除的数,那么n不是素数;否则n是素数。题目要求判断给定的正整数是否为素数,输入包括一个正整数n和n个需要判断的正整数,每个正整数小于2的31次方。输出对于每个需要判断的正整数,如果它是素数,则输出yes,否则输出no。 素数是指只能被1和自身整除的正整数,比如2、3、5、7等都是素数。因此,我们可以用一个循环来判断每个给定的正整数是否为素数。具体方法是,从2开始到该正整数的平方根的整数部分,依次判断该正整数是否能被这些数整除。如果存在一个数可以整除该正整数,则说明该正整数不是素数,输出no;否则说明该正整数是素数,输出yes。 下面是Python语言的示例代码: ```python import math n = int(input()) for i in range(n): num = int(input()) is_prime = True if num <= 1: is_prime = False else: for j in range(2, int(math.sqrt(num)) + 1): if num % j == 0: is_prime = False break if is_prime: print("yes") else: print("no") ``` 其中,math.sqrt(num)用于求该正整数的平方根,int(math.sqrt(num)) + 1用于将平方根向下取整并加1,保证能够覆盖到所有可能的因数。题目要求判断n个正整数是否为素数,其中n<=10。输入格式:第一行输入一个正整数n,接下来n行每行一个正整数。输出格式:对于每个需要判断的正整数,如果是素数则输出yes,否则输出no。 素数是指只能被1和本身整除的正整数,因此我们可以遍历从2到这个正整数的平方根,判断是否存在能整除该数的因子。如果存在则说明不是素数,否则是素数。 以下是Python代码实现: ```python import math def is_prime(num): if num < 2: return False for i in range(2, int(math.sqrt(num))+1): if num % i == 0: return False return True n = int(input()) for i in range(n): num = int(input()) if is_prime(num): print("yes") else: print("no") ``` 以上代码中,is_prime函数用来判断一个数是否为素数。首先判断该数是否小于2,如果小于2则一定不是素数。然后从2开始遍历到该数的平方根,判断是否有能整除该数的因子,如果有则不是素数,返回False。否则说明是素数,返回True。 主程序中,首先读入n,表示需要判断的正整数个数。然后遍历n次,每次读入一个需要判断的正整数,判断该数是否是素数并输出结果。题目要求判断给定的正整数是否是素数,输入格式为第一行一个正整数n,表示接下来有n个需要判断的正整数。每行输入一个小于2的31次方的正整数。输出格式为对于每个需要判断的正整数,如果它是素数则输出yes,否则输出no。题目要求判断给定的正整数是否为素数。输入格式为第一行为一个正整数n(≤10),表示接下来有n个需要判断的正整数;接下来n行,每行给出一个小于231的需要判断的正整数。输出格式为每个需要判断的正整数,如果它是素数,则在一行中输出yes,否则输出no。好的,这是一个判断素数的问题。题目要求输入n个正整数,每个正整数都需要判断是否为素数。如果是素数,输出yes,否则输出no。 一个正整数是素数,当且仅当它只能被1和它本身整除。因此,我们可以从2开始,一直枚举到该正整数的平方根,检查是否有能整除该正整数的数。如果有,那么该正整数就不是素数。 下面是一份Python代码实现,可以供您参考: ```python import math def is_prime(n): if n <= 1: return False for i in range(2, int(math.sqrt(n))+1): if n % i == 0: return False return True n = int(input()) for i in range(n): x = int(input()) if is_prime(x): print("yes") else: print("no") ``` 希望这可以帮助您解决问题!好的,根据题意,你需要编写一个程序来判断一个给定的正整数是否为素数。程序需要读取一个正整数n和n个需要判断的正整数,对于每个输入的正整数,如果它是素数,则输出“yes”,否则输出“no”。 一个正整数若只能被1和它自己整除,就称为素数。因此,我们可以通过判断一个数是否能被2到sqrt(n)之间的整数整除来判断它是否为素数。具体实现可以使用一个循环,从2开始到sqrt(n)结束,逐一判断是否能整除n,如果能整除,则说明n不是素数,否则n是素数。 下面是一个示例代码,希望能对你有所帮助: ```python import math def is_prime(n): if n <= 1: return False for i in range(2, int(math.sqrt(n)) + 1): if n % i == 0: return False return True n = int(input()) for i in range(n): x = int(input()) if is_prime(x): print("yes") else: print("no") ``` 需要注意的是,在判断一个数是否为素数时,需要特别处理小于等于1的情况,因为这些数都不是素数。另外,在判断一个数是否为素数时,我们只需要检查到sqrt(n)即可,因为如果n不是素数,那么它一定可以分解成两个小于sqrt(n)的数的乘积。好的,这里是中文回答: 题目要求我们判断一个给定的正整数是否为素数。输入格式为:第一行输入一个正整数n(n≤10),表示接下来有n个正整数需要判断。接下来n行,每行一个小于231的正整数。输出格式为:对于每个需要判断的正整数,如果它是素数,则输出"yes",否则输出"no"。 素数指的是只能被1和本身整除的正整数,比如2、3、5、7等等。那么我们可以按照以下步骤来判断一个正整数是否为素数: 1. 将输入的正整数记为num。 2. 从2开始到num-1遍历每个正整数i。 3. 如果num能被i整除,说明num不是素数,输出"no",并跳出循环。 4. 如果遍历完所有正整数i后都没有出现num能被i整除的情况,说明num是素数,输出"yes"。 以下是Python代码示例: ``` import math def is_prime(num): if num < 2: return False for i in range(2, int(math.sqrt(num))+1): if num % i == 0: return False return True n = int(input()) for i in range(n): num = int(input()) if is_prime(num): print("yes") else: print("no") ``` 希望能对您有所帮助!好的,这是一个判断给定正整数是否素数的问题。输入格式:第一行为正整数n(≤10),表示有n个需要判断的正整数;接下来n行,每行一个需要判断的正整数(小于231)。输出格式:对于每个需要判断的正整数,如果它是素数,则输出yes,否则输出no。题目要求判断给定的正整数是否为素数,输入包括一个正整数n和n个需要判断的正整数,每个正整数需要判断是否为素数,输出对于每个需要判断的正整数,如果是素数则输出yes,否则输出no。 素数是指除了1和本身之外没有其它正因数的正整数,如2、3、5、7等都是素数。因此,可以用一个循环来判断每个数是否为素数,具体方法如下: 1. 如果该数小于2,则不是素数,直接输出no。 2. 如果该数等于2,则是素数,输出yes。 3. 如果该数为偶数且不等于2,则不是素数,直接输出no。 4. 如果该数为奇数,则从3开始,每次增加2进行循环,判断该数能否被当前的数整除,如果能,则不是素数,直接输出no;如果不能,继续循环。 5. 如果循环结束时都没有找到能整除该数的数,则该数是素数,输出yes。 具体代码实现如下: ``` #include <stdio.h> int main() { int n, i, j, flag; long long num; scanf("%d", &n); for (i = 0; i < n; i++) { scanf("%lld", &num); if (num < 2) { printf("no\n"); continue; } if (num == 2) { printf("yes\n"); continue; } if (num % 2 == 0) { printf("no\n"); continue; } flag = 1; for (j = 3; j * j <= num; j += 2) { if (num % j == 0) { flag = 0; break; } } if (flag) { printf("yes\n"); } else { printf("no\n"); } } return 0; } ``` 注意,由于本题给定的数可能很大,因此需要使用long long类型来存储输入的数。另外,在循环中可以优化计算,只需要判断到sqrt(num)即可,因为如果num有大于sqrt(num)的因数,那么它一定有小于sqrt(num)的因数。 是的,本题的目标很简单,就是判断一个给定的正整数是否素数。输入格式:输入在第一行给出一个正整数n(≤10),随后n行,每行给出一个小于231的需要判断的正整数。输出格式:对每个需要判断的正整数,如果它是素数,则在一行中输出“yes”,否则输出“no”。好的,以下是用中文回答您的问题: 题目要求判断给定的正整数是否为素数。输入格式为首行一个正整数n(n≤10),接下来n行每行一个小于2的31次方的正整数。输出格式为对于每个需要判断的正整数,若为素数则输出yes,否则输出no。 是的,本题的目的是判断给定的正整数是否为素数。输入格式为第一行给出一个正整数n(≤10),接下来n行,每行给出一个小于231的正整数;输出格式为对每个需要判断的正整数,如果它是素数,则输出yes,否则输出no。 \u6b64\u9898\u7684\u76ee\u6807\u662f\u5224\u65ad\u8f93\u5165\u7684\u6b63\u6574\u6570\u662f\u5426\u7d20\u6570\u3002 \u4e00\u4e2a\u5b9a\u4e49\u7684\u6b63\u6574\u6570\u662f\u4e00\u4e2a\u6574\u6570\uff0c\u4e14\u4e0d\u542b\u4efb\u4f55\u5c0f\u6570\u3002\u5982\u679c\u8f93\u5165\u7684\u6570\u662f\u7d20\u6570\uff0c\u5219\u8f93\u51fayes\uff0c\u5426\u5219\u8f93\u51fano\u3002 \u4ee5\u4e0b\u662f\u4e00\u4e2aPython\u7684\u89e3\u51b3\u65b9\u6848\uff1a ```python for i in range(int(input())): # 输入测试用例的数量并循环 n = int(input()) # 输入需要判断的数字 if n > 1 and all(n % i != 0 for i in range(2, int(n ** 0.5) + 1)): # 如果该数大于1且只能被1和它自己整除,那么它是一个质数 print("yes") else: print("no") ``` \u8fd9\u4e2aPython\u89e3\u51b3\u65b9\u6848\u901a\u8fc7\u4e00\u4e2afor\u5faa\u73af\uff0c\u4ece\u7b2c\u4e00\u884c\u8f93\u5165\u6d4b\u8bd5\u7528\u4f8b\u7684\u6570\u91cf\uff0c\u5e76\u5bf9\u6bcf\u4e00\u4e2a\u6570\u8fdb\u884c\u5224\u65ad\uff0c\u5982\u679c\u6570\u662f\u7d20\u6570\uff0c\u5219\u8f93\u51fayes\uff0c\u5426\u5219\u8f93\u51fano\u3002 ### 回答2: 素数,是指只能被1和本身整除的正整数。因此,判断一个给定的正整数是否素数,只需让这个数从2开始依次除以小于自己的数,如果能整除,则不是素数;如果一直到n-1都不能整除,则是素数。 根据题意,我们需要读入n个需要判断的正整数。因为输入的数值可能很大,所以可以使用long long类型来存储。然后,将每个数从2开始逐个除以它前面的数,如果有能整除它的数,则直接输出no;如果一直到该数前面的所有数都不能整除它,则输出yes。 C++代码如下: ```cpp #include <iostream> using namespace std; bool checkPrime(long long n) //判断素数函数 { if(n <= 1) //小于等于1的数都不是素数 return false; for(long long i=2; i*i<=n; i++) //从2开始除,循环到该数的开方 { if(n % i == 0) //能整除则不是素数 return false; } return true; } int main() { int n; long long x; //存储需要判断的数 cin >> n; for(int i=0; i<n; i++) { cin >> x; if(checkPrime(x)) //调用判断素数函数 cout << "yes" << endl; else cout << "no" << endl; } return 0; } ``` 这样,就可以判断是否是素数了,如果是,输出yes;否则输出no。 ### 回答3: 题目要求我们判断给定的正整数是否为素数,所谓素数指的是只能被1和本身整除的正整数。基于这个定义,我们可以使用试除法判断给定的正整数是否为素数。 具体思路如下:对于每个需要判断的正整数n,我们从2开始,依次将n除以2、3、4、5……直到n/2为止。如果n除以任何整数都不为0,则n是素数,否则,n不是素数。 代码如下: #include<iostream> #include<vector> #include<cmath> using namespace std; bool isPrime(int n){ if(n<=1) return false; //1不是素数 int sqr=sqrt(n); for (int i = 2; i<=sqr; i++) { if(n%i==0) return false; //满足该条件则n不是素数 } return true; //否则n是素数 } int main(){ int n; cin >> n; for (int i = 0; i < n; i++) { int x; cin >> x; if(isPrime(x)) cout << "yes" << endl; else cout << "no" << endl; } return 0; } 上述代码首先定义了一个isPrime的函数,用于判断正整数是否为素数。判断方法即为试除法,首先要将1排除掉,然后找到n的平方根作为试除的上限,依次将n除以2、3、4、5……直到n/2为止。如果在某一个除数下,n能够整除,则说明n不是素数,如果n不能在任意除数下整除,则说明n是素数。 主函数中,首先读入需要判断的正整数数量n,然后通过for循环依次读入n个需要判断的正整数,调用isPrime函数判断是否为素数并输出对应结果。 本题还可以使用其他判断素数的方法,例如厄拉多塞筛法、米勒-拉宾素性检验法等等,感兴趣的同学可以自行了解。
阅读全文

相关推荐

最新推荐

recommend-type

Python编程判断一个正整数是否为素数的方法

在Python编程中,判断一个正整数是否为素数是一项基本任务,素数是指除了1和它自身外没有其他正因数的自然数。这里我们将深入探讨如何利用Python实现这一功能,以及如何扩展到判断“循环素数”。 首先,我们要定义...
recommend-type

STM32之光敏电阻模拟路灯自动开关灯代码固件

这是一个STM32模拟天黑天亮自动开关灯代码固件,使用了0.96寸OLED屏幕显示文字,例程亲测可用,视频示例可B站搜索 285902929
recommend-type

简化填写流程:Annoying Form Completer插件

资源摘要信息:"Annoying Form Completer-crx插件" Annoying Form Completer是一个针对Google Chrome浏览器的扩展程序,其主要功能是帮助用户自动填充表单中的强制性字段。对于经常需要在线填写各种表单的用户来说,这是一个非常实用的工具,因为它可以节省大量时间,并减少因重复输入相同信息而产生的烦恼。 该扩展程序的描述中提到了用户在填写表格时遇到的麻烦——必须手动输入那些恼人的强制性字段。这些字段可能包括但不限于用户名、邮箱地址、电话号码等个人信息,以及各种密码、确认密码等重复性字段。Annoying Form Completer的出现,使这一问题得到了缓解。通过该扩展,用户可以在表格填充时减少到“一个压力……或两个”,意味着极大的方便和效率提升。 值得注意的是,描述中也使用了“抽浏览器”的表述,这可能意味着该扩展具备某种数据提取或自动化填充的机制,虽然这个表述不是一个标准的技术术语,它可能暗示该扩展程序能够从用户之前的行为或者保存的信息中提取必要数据并自动填充到表单中。 虽然该扩展程序具有很大的便利性,但用户在使用时仍需谨慎,因为自动填充个人信息涉及到隐私和安全问题。理想情况下,用户应该只在信任的网站上使用这种类型的扩展程序,并确保扩展程序是从可靠的来源获取,以避免潜在的安全风险。 根据【压缩包子文件的文件名称列表】中的信息,该扩展的文件名为“Annoying_Form_Completer.crx”。CRX是Google Chrome扩展的文件格式,它是一种压缩的包格式,包含了扩展的所有必要文件和元数据。用户可以通过在Chrome浏览器中访问chrome://extensions/页面,开启“开发者模式”,然后点击“加载已解压的扩展程序”按钮来安装CRX文件。 在标签部分,我们看到“扩展程序”这一关键词,它明确了该资源的性质——这是一个浏览器扩展。扩展程序通常是通过增加浏览器的功能或提供额外的服务来增强用户体验的小型软件包。这些程序可以极大地简化用户的网上活动,从保存密码、拦截广告到自定义网页界面等。 总结来看,Annoying Form Completer作为一个Google Chrome的扩展程序,提供了一个高效的解决方案,帮助用户自动化处理在线表单的填写过程,从而提高效率并减少填写表单时的麻烦。在享受便捷的同时,用户也应确保使用扩展程序时的安全性和隐私性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

使用MATLAB写一个在柱坐标系中实现以下功能的代码:1) 生成具有损耗的平面电磁波模型;2) 调整电场分量Ex和Ey的幅度和相位,以仿真三种极化的形成?

在MATLAB中,处理电磁学问题通常需要利用`physconst`、`polar2cartesian`等函数库。以下是一个简化的示例,展示了如何生成一个基本的平面电磁波模型,并调整电场分量的幅度和相位。请注意,实际的损耗模型通常会涉及到复杂的阻抗和吸收系数,这里我们将简化为理想情况。 ```matlab % 初始化必要的物理常数 c = physconst('LightSpeed'); % 光速 omega = 2*pi * 5e9; % 角频率 (例如 GHz) eps0 = physconst('PermittivityOfFreeSpace'); % 真空介电常数 % 定义网格参数
recommend-type

TeraData技术解析与应用

资源摘要信息: "TeraData是一个高性能、高可扩展性的数据仓库和数据库管理系统,它支持大规模的数据存储和复杂的数据分析处理。TeraData的产品线主要面向大型企业级市场,提供多种数据仓库解决方案,包括并行数据仓库和云数据仓库等。由于其强大的分析能力和出色的处理速度,TeraData被广泛应用于银行、电信、制造、零售和其他需要处理大量数据的行业。TeraData系统通常采用MPP(大规模并行处理)架构,这意味着它可以通过并行处理多个计算任务来显著提高性能和吞吐量。" 由于提供的信息中描述部分也是"TeraData",且没有详细的内容,所以无法进一步提供关于该描述的详细知识点。而标签和压缩包子文件的文件名称列表也没有提供更多的信息。 在讨论TeraData时,我们可以深入了解以下几个关键知识点: 1. **MPP架构**:TeraData使用大规模并行处理(MPP)架构,这种架构允许系统通过大量并行运行的处理器来分散任务,从而实现高速数据处理。在MPP系统中,数据通常分布在多个节点上,每个节点负责一部分数据的处理工作,这样能够有效减少数据传输的时间,提高整体的处理效率。 2. **并行数据仓库**:TeraData提供并行数据仓库解决方案,这是针对大数据环境优化设计的数据库架构。它允许同时对数据进行读取和写入操作,同时能够支持对大量数据进行高效查询和复杂分析。 3. **数据仓库与BI**:TeraData系统经常与商业智能(BI)工具结合使用。数据仓库可以收集和整理来自不同业务系统的数据,BI工具则能够帮助用户进行数据分析和决策支持。TeraData的数据仓库解决方案提供了一整套的数据分析工具,包括但不限于ETL(抽取、转换、加载)工具、数据挖掘工具和OLAP(在线分析处理)功能。 4. **云数据仓库**:除了传统的本地部署解决方案,TeraData也在云端提供了数据仓库服务。云数据仓库通常更灵活、更具可伸缩性,可根据用户的需求动态调整资源分配,同时降低了企业的运维成本。 5. **高可用性和扩展性**:TeraData系统设计之初就考虑了高可用性和可扩展性。系统可以通过增加更多的处理节点来线性提升性能,同时提供了多种数据保护措施以保证数据的安全和系统的稳定运行。 6. **优化与调优**:对于数据仓库而言,性能优化是一个重要的环节。TeraData提供了一系列的优化工具和方法,比如SQL调优、索引策略和执行计划分析等,来帮助用户优化查询性能和提高数据访问效率。 7. **行业应用案例**:在金融、电信、制造等行业中,TeraData可以处理海量的交易数据、客户信息和业务数据,它在欺诈检测、客户关系管理、供应链优化等关键业务领域发挥重要作用。 8. **集成与兼容性**:TeraData系统支持与多种不同的业务应用和工具进行集成。它也遵循行业标准,能够与其他数据源、分析工具和应用程序无缝集成,为用户提供一致的用户体验。 以上便是关于TeraData的知识点介绍。由于文件描述内容重复且过于简略,未能提供更深层次的介绍,如果需要进一步详细的知识,建议参考TeraData官方文档或相关技术文章以获取更多的专业信息。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

CC-LINK远程IO模块在环境监控中的应用:技术与案例探讨

![CC-LINK](https://www.mitsubishielectric.com/fa/products/cnt/plcnet/pmerit/cclink_ie/concept/img/main_img.jpg) # 摘要 CC-LINK远程IO模块作为一种先进的工业通信技术,在环境监控系统中具有广泛应用。本文首先概述了CC-LINK远程IO模块的基本概念及其在环境监控系统中的基础理论,包括硬件组成、软件架构及技术优势。随后,详细介绍了其在实时监控与远程控制、系统集成与配置、安全维护方面的具体实践应用。案例分析部分深入探讨了CC-LINK模块在不同环境监控场景中的应用效果与技术解决
recommend-type

mysql语句创建一个学生数据表,包含学号,姓名,性别,出生日期和身高字段

在MySQL中,你可以使用`CREATE TABLE`语句来创建一个名为"students"的学生信息表。以下是创建该表的基本结构: ```sql CREATE TABLE students ( student_id INT PRIMARY KEY, -- 学号,主键 name VARCHAR(50) NOT NULL, -- 姓名,非空 gender ENUM('Male', 'Female') -- 性别,枚举类型 -- (这里假设只有两个选项,可根据需要调整) birth_date DAT