使用PSO优化卷积神经网络的学习率和损失函数系数的例子
时间: 2024-01-23 07:40:48 浏览: 150
以下是使用PSO优化卷积神经网络的学习率和损失函数系数的例子:
1. 首先,定义一个卷积神经网络模型,并且需要训练的参数包括学习率和损失函数系数。例如:
```
class CNN(nn.Module):
def __init__(self, learning_rate, loss_coeff):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(3, 32, 3, padding=1)
self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
self.fc1 = nn.Linear(64 * 8 * 8, 500)
self.fc2 = nn.Linear(500, 10)
self.learning_rate = learning_rate
self.loss_coeff = loss_coeff
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2)
x = x.view(-1, 64 * 8 * 8)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
```
2. 然后,定义一个PSO优化器,用于优化学习率和损失函数系数。例如:
```
class PSOOptimizer:
def __init__(self, num_particles, c1, c2, w_min, w_max, num_epochs):
self.num_particles = num_particles
self.c1 = c1
self.c2 = c2
self.w_min = w_min
self.w_max = w_max
self.num_epochs = num_epochs
def optimize(self, cnn):
best_loss = float('inf')
best_lr = cnn.learning_rate
best_coeff = cnn.loss_coeff
num_params = len(list(cnn.parameters()))
particles = np.zeros((self.num_particles, num_params * 2))
velocities = np.zeros((self.num_particles, num_params * 2))
for i in range(self.num_particles):
lr = np.random.uniform(0.001, 0.01)
coeff = np.random.uniform(0.5, 1.0)
particles[i,:] = np.concatenate((np.repeat(lr, num_params), np.repeat(coeff, num_params)))
for epoch in range(self.num_epochs):
for i in range(self.num_particles):
cnn.learning_rate = particles[i,:num_params].reshape(-1,1)
cnn.loss_coeff = particles[i,num_params:].reshape(-1,1)
optimizer = optim.SGD(cnn.parameters(), lr=cnn.learning_rate, momentum=0.9)
criterion = nn.CrossEntropyLoss(weight=torch.Tensor([cnn.loss_coeff]*10))
train_loss = train(cnn, optimizer, criterion)
if train_loss < best_loss:
best_loss = train_loss
best_lr = cnn.learning_rate
best_coeff = cnn.loss_coeff
r1 = np.random.rand(num_params * 2)
r2 = np.random.rand(num_params * 2)
velocities[i] = self.w_max * (velocities[i] +
self.c1 * r1 * (particles[i] - particles[i]) +
self.c2 * r2 * (best_loss - particles[i]))
velocities[i][velocities[i] < self.w_min] = self.w_min
velocities[i][velocities[i] > self.w_max] = self.w_max
particles[i] += velocities[i]
particles[i][particles[i] < 0] = 0
particles[i][particles[i] > 1] = 1
cnn.learning_rate = best_lr
cnn.loss_coeff = best_coeff
return cnn
```
3. 最后,定义一个训练函数,用于训练卷积神经网络,并返回训练损失。例如:
```
def train(cnn, optimizer, criterion):
train_loss = 0.0
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = cnn(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item() * len(data)
train_loss /= len(train_loader.dataset)
return train_loss
```
通过以上三个步骤,我们可以使用PSO优化学习率和损失函数系数来训练卷积神经网络。
阅读全文