c++五子棋神经网络算法代码

时间: 2023-09-04 15:06:53 浏览: 50
以下是使用C++实现的五子棋神经网络算法代码,仅供参考: ```c++ #include <iostream> #include <vector> #include <cstdlib> #include <ctime> #include <cmath> using namespace std; const int BOARD_SIZE = 15; const int INPUT_SIZE = BOARD_SIZE * BOARD_SIZE; const int HIDDEN_LAYER_SIZE = 200; const int OUTPUT_SIZE = BOARD_SIZE * BOARD_SIZE; const double LEARNING_RATE = 0.1; const double MOMENTUM = 0.9; class NeuralNetwork { private: vector<double> inputNodes; vector<double> hiddenNodes; vector<double> outputNodes; vector<double> hiddenBiases; vector<double> outputBiases; vector<vector<double>> hiddenWeights; vector<vector<double>> outputWeights; vector<double> hiddenErrorGradients; vector<double> outputErrorGradients; vector<vector<double>> hiddenWeightDelta; vector<vector<double>> outputWeightDelta; public: NeuralNetwork() { inputNodes.resize(INPUT_SIZE); hiddenNodes.resize(HIDDEN_LAYER_SIZE); outputNodes.resize(OUTPUT_SIZE); hiddenBiases.resize(HIDDEN_LAYER_SIZE); outputBiases.resize(OUTPUT_SIZE); hiddenWeights.resize(HIDDEN_LAYER_SIZE, vector<double>(INPUT_SIZE)); outputWeights.resize(OUTPUT_SIZE, vector<double>(HIDDEN_LAYER_SIZE)); hiddenErrorGradients.resize(HIDDEN_LAYER_SIZE); outputErrorGradients.resize(OUTPUT_SIZE); hiddenWeightDelta.resize(HIDDEN_LAYER_SIZE, vector<double>(INPUT_SIZE)); outputWeightDelta.resize(OUTPUT_SIZE, vector<double>(HIDDEN_LAYER_SIZE)); srand(time(NULL)); for (int i = 0; i < HIDDEN_LAYER_SIZE; i++) { hiddenBiases[i] = ((double) rand() / RAND_MAX) * 2 - 1; for (int j = 0; j < INPUT_SIZE; j++) { hiddenWeights[i][j] = ((double) rand() / RAND_MAX) * 2 - 1; } } for (int i = 0; i < OUTPUT_SIZE; i++) { outputBiases[i] = ((double) rand() / RAND_MAX) * 2 - 1; for (int j = 0; j < HIDDEN_LAYER_SIZE; j++) { outputWeights[i][j] = ((double) rand() / RAND_MAX) * 2 - 1; } } } void setInputNodes(vector<vector<int>>& board) { for (int i = 0; i < BOARD_SIZE; i++) { for (int j = 0; j < BOARD_SIZE; j++) { inputNodes[i * BOARD_SIZE + j] = board[i][j]; } } } void feedForward() { for (int i = 0; i < HIDDEN_LAYER_SIZE; i++) { double sum = 0.0; for (int j = 0; j < INPUT_SIZE; j++) { sum += inputNodes[j] * hiddenWeights[i][j]; } sum += hiddenBiases[i]; hiddenNodes[i] = 1.0 / (1.0 + exp(-sum)); } for (int i = 0; i < OUTPUT_SIZE; i++) { double sum = 0.0; for (int j = 0; j < HIDDEN_LAYER_SIZE; j++) { sum += hiddenNodes[j] * outputWeights[i][j]; } sum += outputBiases[i]; outputNodes[i] = 1.0 / (1.0 + exp(-sum)); } } void backPropagate(vector<int>& target) { for (int i = 0; i < OUTPUT_SIZE; i++) { outputErrorGradients[i] = outputNodes[i] * (1 - outputNodes[i]) * (target[i] - outputNodes[i]); for (int j = 0; j < HIDDEN_LAYER_SIZE; j++) { outputWeightDelta[i][j] = LEARNING_RATE * outputErrorGradients[i] * hiddenNodes[j] + MOMENTUM * outputWeightDelta[i][j]; outputWeights[i][j] += outputWeightDelta[i][j]; } outputBiases[i] += LEARNING_RATE * outputErrorGradients[i]; } for (int i = 0; i < HIDDEN_LAYER_SIZE; i++) { double sum = 0.0; for (int j = 0; j < OUTPUT_SIZE; j++) { sum += outputErrorGradients[j] * outputWeights[j][i]; } hiddenErrorGradients[i] = hiddenNodes[i] * (1 - hiddenNodes[i]) * sum; for (int j = 0; j < INPUT_SIZE; j++) { hiddenWeightDelta[i][j] = LEARNING_RATE * hiddenErrorGradients[i] * inputNodes[j] + MOMENTUM * hiddenWeightDelta[i][j]; hiddenWeights[i][j] += hiddenWeightDelta[i][j]; } hiddenBiases[i] += LEARNING_RATE * hiddenErrorGradients[i]; } } vector<int> getOutputNodes() { vector<int> result(OUTPUT_SIZE); for (int i = 0; i < OUTPUT_SIZE; i++) { result[i] = round(outputNodes[i]); } return result; } }; class Game { private: vector<vector<int>> board; int currentPlayer; int winner; bool gameOver; NeuralNetwork neuralNetwork; public: Game() { board.resize(BOARD_SIZE, vector<int>(BOARD_SIZE)); currentPlayer = 1; winner = 0; gameOver = false; } void play() { while (!gameOver) { printBoard(); if (currentPlayer == 1) { playerMove(); } else { computerMove(); } updateGameState(); } printBoard(); printResult(); } private: void printBoard() { cout << " "; for (int i = 0; i < BOARD_SIZE; i++) { cout << i << " "; } cout << endl; for (int i = 0; i < BOARD_SIZE; i++) { cout << i << " "; for (int j = 0; j < BOARD_SIZE; j++) { if (board[i][j] == 0) { cout << ". "; } else if (board[i][j] == 1) { cout << "X "; } else { cout << "O "; } } cout << endl; } } void playerMove() { int x, y; cout << "Enter your move (row column): "; cin >> x >> y; board[x][y] = currentPlayer; } void computerMove() { vector<int> input(BOARD_SIZE * BOARD_SIZE); for (int i = 0; i < BOARD_SIZE; i++) { for (int j = 0; j < BOARD_SIZE; j++) { input[i * BOARD_SIZE + j] = board[i][j]; } } neuralNetwork.setInputNodes(board); neuralNetwork.feedForward(); vector<int> output = neuralNetwork.getOutputNodes(); int maxIndex = 0; for (int i = 0; i < BOARD_SIZE * BOARD_SIZE; i++) { if (output[i] > output[maxIndex]) { maxIndex = i; } } int x = maxIndex / BOARD_SIZE; int y = maxIndex % BOARD_SIZE; board[x][y] = currentPlayer; } void updateGameState() { int winner = checkWinner(); if (winner != 0) { gameOver = true; this->winner = winner; } else { currentPlayer = (currentPlayer == 1 ? 2 : 1); } } int checkWinner() { // Check rows for (int i = 0; i < BOARD_SIZE; i++) { int count = 0; for (int j = 0; j < BOARD_SIZE; j++) { if (board[i][j] == currentPlayer) { count++; } else { count = 0; } if (count == 5) { return currentPlayer; } } } // Check columns for (int j = 0; j < BOARD_SIZE; j++) { int count = 0; for (int i = 0; i < BOARD_SIZE; i++) { if (board[i][j] == currentPlayer) { count++; } else { count = 0; } if (count == 5) { return currentPlayer; } } } // Check diagonals for (int i = 0; i < BOARD_SIZE - 4; i++) { for (int j = 0; j < BOARD_SIZE - 4; j++) { if (board[i][j] == currentPlayer && board[i + 1][j + 1] == currentPlayer && board[i + 2][j + 2] == currentPlayer && board[i + 3][j + 3] == currentPlayer && board[i + 4][j + 4] == currentPlayer) { return currentPlayer; } } } // Check anti-diagonals for (int i = 4; i < BOARD_SIZE; i++) { for (int j = 0; j < BOARD_SIZE - 4; j++) { if (board[i][j] == currentPlayer && board[i - 1][j + 1] == currentPlayer && board[i - 2][j + 2] == currentPlayer && board[i - 3][j + 3] == currentPlayer && board[i - 4][j + 4] == currentPlayer) { return currentPlayer; } } } // Check for tie int count = 0; for (int i = 0; i < BOARD_SIZE; i++) { for (int j = 0; j < BOARD_SIZE; j++) { if (board[i][j] != 0) { count++; } } } if (count == BOARD_SIZE * BOARD_SIZE) { gameOver = true; return -1; } return 0; } void printResult() { if (winner == -1) { cout << "Tie!" << endl; } else if (winner == 1) { cout << "You win!" << endl; } else { cout << "Computer wins!" << endl; } } }; int main() { Game game; game.play(); return 0; } ``` 该代码实现了一个简单的五子棋游戏,并使用神经网络算法实现了计算机的下棋。其中,神经网络包含一个输入层、一个隐藏层和一个输出层,每个节点采用sigmoid函数作为激活函数。神经网络的训练采用反向传播算法。

相关推荐

最新推荐

recommend-type

基于C++实现五子棋AI算法思想

主要为大家详细介绍了基于C++实现五子棋AI算法思想,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

C++递归算法实例代码

主要介绍了C++递归算法实例代码,还是比较不错的,运用了递归算法解决相关问题,这里分享给大家,需要的朋友可以参考下。
recommend-type

用C++实现DBSCAN聚类算法

本篇文章是对使用C++实现DBSCAN聚类算法的方法进行了详细的分析介绍,需要的朋友参考下
recommend-type

基于c++ ege图形库实现五子棋游戏

主要为大家详细介绍了基于c++ ege图形库实现五子棋游戏,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

C++实现分水岭算法(Watershed Algorithm)

主要为大家详细介绍了C++实现分水岭算法Watershed Algorithm,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。