from sklearn.svm import SVC classifier = SVC(kernel="linear") classifier.fit(X,np.ravel(y))
时间: 2023-06-14 11:08:04 浏览: 206
这段代码是用来训练一个线性SVM分类器的。具体来说,它使用了scikit-learn库中的SVC类(支持向量机分类器),并指定了线性核函数(kernel="linear")。然后,它使用fit()方法来训练分类器,其中X是训练数据的特征矩阵,y是对应的标签向量(即训练数据的类别)。其中,np.ravel()函数用来将y展平成一个一维数组。训练完毕后,分类器就可以用来对新的数据进行分类了。
相关问题
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 h = (x_max / x_min)/100 #间隔 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) X_plot = np.c_[xx.ravel(), yy.ravel()] C = 1.0 svc_classifier = svm.SVC(kernel='linear', C=C).fit(X,y) Z = svc_classifier.predict(X_plot) Z = Z.reshape(xx.shape)为什么训练和测试能用一样的数据
这段代码中并没有明确区分训练和测试数据,而是直接使用了变量X和y。这里的X和y是指整个数据集,包括训练数据和测试数据。在SVM分类器训练过程中,我们将整个数据集作为训练数据,因此训练和测试使用的是相同的数据。
然而,这样做并不是最好的做法。在机器学习中,我们通常会将数据集分为训练集和测试集,以便在训练和测试阶段使用不同的数据。这样做的目的是为了评估模型的泛化能力,即模型在之前未见过的数据上的表现。因此,在实际应用中,我们应该将数据集分为训练集和测试集,并使用测试集对模型进行评估。
vals = [0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30] # C, gamma = dataset3Params(X3, y3.ravel(), Xval, yval.ravel(),vals) classifier4 = SVC(C=C,gamma=gamma) #把最优C和gamma带入模型中训练边界图 classifier4.fit(X3,y3.ravel())
这段代码看起来像是使用支持向量机 (SVM) 对训练数据进行分类,其中 `vals` 是用于调参的参数列表,包括不同的惩罚因子 C 和核函数参数 gamma。函数 `dataset3Params` 可能是用来在参数列表中选择最佳参数的函数,但是这段代码没有给出该函数的实现。接着,使用得到的最优 C 和 gamma 建立一个 SVM 分类器,并将其拟合到数据集 `X3` 和 `y3` 上。最终,该分类器可以用于对新的数据进行分类。
阅读全文