NQ-DBSCAN python代码
时间: 2023-11-09 12:11:25 浏览: 129
DBSCAN 算法python实现
以下是一个简单的NQ-DBSCAN Python实现:
```
import numpy as np
def nq_dbscan(X, eps, min_pts):
"""
NQ-DBSCAN聚类算法的Python实现
:param X: 数据集
:param eps: epsilon半径
:param min_pts: 最小邻居数
:return: 聚类结果
"""
# 初始化标签和核心点集合
labels = np.zeros(len(X))
core_pts = set()
# 计算距离矩阵
dist_matrix = np.zeros((len(X), len(X)))
for i in range(len(X)):
for j in range(i + 1, len(X)):
dist_matrix[i][j] = np.linalg.norm(X[i] - X[j])
dist_matrix[j][i] = dist_matrix[i][j]
# 找出所有核心点
for i in range(len(X)):
if len(np.where(dist_matrix[i] <= eps)[0]) >= min_pts:
core_pts.add(i)
# 开始聚类
cluster_id = 0
for i in range(len(X)):
if labels[i] != 0:
continue
# 如果当前点是核心点,则从该点开始扩展聚类
if i in core_pts:
cluster_id += 1
labels[i] = cluster_id
expand_cluster(i, labels, core_pts, dist_matrix, eps, min_pts)
# 如果当前点不是核心点,则标记为噪声点
else:
labels[i] = -1
return labels
def expand_cluster(pt_idx, labels, core_pts, dist_matrix, eps, min_pts):
"""
扩展聚类
:param pt_idx: 当前点的索引
:param labels: 标签数组
:param core_pts: 核心点集合
:param dist_matrix: 距离矩阵
:param eps: epsilon半径
:param min_pts: 最小邻居数
"""
# 找到当前点的所有邻居
neighbors = np.where(dist_matrix[pt_idx] <= eps)[0]
for neighbor in neighbors:
if labels[neighbor] == 0:
# 如果邻居是核心点,则扩展聚类
if neighbor in core_pts:
labels[neighbor] = labels[pt_idx]
expand_cluster(neighbor, labels, core_pts, dist_matrix, eps, min_pts)
# 如果邻居不是核心点,则标记为边界点
else:
labels[neighbor] = labels[pt_idx]
```
该实现使用了numpy库来加速计算。首先计算距离矩阵,然后找出所有核心点。然后从每个未分类的点开始,如果该点是核心点,则从该点开始扩展聚类;否则,标记为噪声点。在扩展聚类时,如果邻居是核心点,则继续扩展聚类;否则,标记为边界点。
阅读全文