用Newton法求非线性规划函数近似最优解matlab程序
时间: 2023-12-10 18:40:51 浏览: 192
以下是使用Newton法求解非线性规划函数的MATLAB程序:
```matlab
% 定义目标函数和梯度向量
f = @(x) 3*x(1)^2 + 2*x(2)^2 + x(1)*x(2) - 4*x(1) - 5*x(2);
grad_f = @(x) [6*x(1) + x(2) - 4; 4*x(2) + x(1) - 5];
% 定义Hessian矩阵
hess_f = @(x) [6, 1; 1, 4];
% 定义初始点和容许误差
x0 = [0; 0];
tol = 1e-6;
% 初始化迭代步骤
k = 0;
max_iter = 1000;
% 迭代更新
while k < max_iter
% 计算梯度和Hessian矩阵
g = grad_f(x0);
H = hess_f(x0);
% 判断停止条件
if norm(g) < tol
break;
end
% 计算搜索方向
d = -H\g;
% 更新迭代步骤
x1 = x0 + d;
x0 = x1;
k = k + 1;
end
% 输出结果
fprintf('The approximate optimal solution is (%f, %f)\n', x0(1), x0(2));
fprintf('The objective function value at the optimal solution is %f\n', f(x0));
```
这个程序使用Newton法求解非线性规划函数的近似最优解。在这个例子中,我们定义了目标函数和梯度向量,以及Hessian矩阵。然后我们定义初始点和容许误差,并进行迭代更新,直到达到停止条件。最后,程序输出近似最优解和目标函数值。
阅读全文
相关推荐


















