写出基于遗传算法的蓄电池和飞轮储能的容量优化配置代码
时间: 2024-01-24 19:01:52 浏览: 94
以下是基于遗传算法的蓄电池和飞轮储能的容量优化配置代码,供参考:
```python
import random
# 定义遗传算法参数
POP_SIZE = 50 # 种群数量
CROSS_RATE = 0.8 # 交叉概率
MUTATION_RATE = 0.1 # 变异概率
N_GENERATIONS = 50 # 迭代次数
# 定义系统参数
POWER_DEMAND = 10 # 功率需求
ENERGY_DEMAND = 100 # 能量需求
BATTERY_COST = 1 # 电池成本
FLYWHEEL_COST = 5 # 飞轮成本
BATTERY_LIFE = 5 # 电池寿命
FLYWHEEL_LIFE = 10 # 飞轮寿命
# 定义电池和飞轮容量范围
BATTERY_CAPACITY_RANGE = (10, 50)
FLYWHEEL_CAPACITY_RANGE = (5, 25)
# 计算适应度函数
def fitness_func(individual):
battery_capacity = individual[0]
flywheel_capacity = individual[1]
battery_energy = battery_capacity * BATTERY_LIFE
flywheel_energy = flywheel_capacity * FLYWHEEL_LIFE
total_cost = battery_capacity * BATTERY_COST + flywheel_capacity * FLYWHEEL_COST
if battery_energy + flywheel_energy >= ENERGY_DEMAND and (battery_capacity + flywheel_capacity) >= POWER_DEMAND:
return total_cost
else:
return float('inf')
# 定义交叉函数
def crossover(parent_1, parent_2):
if random.random() < CROSS_RATE:
index = random.randint(0, len(parent_1)-1)
child_1 = parent_1[:index] + parent_2[index:]
child_2 = parent_2[:index] + parent_1[index:]
return child_1, child_2
else:
return parent_1, parent_2
# 定义变异函数
def mutate(individual):
if random.random() < MUTATION_RATE:
index = random.randint(0, len(individual)-1)
if index == 0:
individual[index] = random.randint(*BATTERY_CAPACITY_RANGE)
else:
individual[index] = random.randint(*FLYWHEEL_CAPACITY_RANGE)
return individual
# 定义遗传算法主程序
def genetic_algorithm():
# 初始化种群
population = [[random.randint(*BATTERY_CAPACITY_RANGE), random.randint(*FLYWHEEL_CAPACITY_RANGE)] for _ in range(POP_SIZE)]
for generation in range(N_GENERATIONS):
# 计算适应度
fitness = [fitness_func(individual) for individual in population]
# 选择种群中适应度最好的个体
best_individual = population[fitness.index(min(fitness))]
# 选择种群中的父母个体
parents = []
for _ in range(len(population)//2):
index_1 = random.randint(0, len(population)-1)
index_2 = random.randint(0, len(population)-1)
parent_1 = population[index_1]
parent_2 = population[index_2]
parents.append((parent_1, parent_2))
# 进行交叉和变异
children = []
for parent_1, parent_2 in parents:
child_1, child_2 = crossover(parent_1, parent_2)
child_1 = mutate(child_1)
child_2 = mutate(child_2)
children.append(child_1)
children.append(child_2)
# 更新种群
population = children
# 输出当前迭代的最优解
print('Generation:', generation, 'Best Individual:', best_individual, 'Cost:', fitness_func(best_individual))
return best_individual
# 运行遗传算法
best_individual = genetic_algorithm()
# 输出最终结果
battery_capacity = best_individual[0]
flywheel_capacity = best_individual[1]
print('Battery Capacity:', battery_capacity, 'Flywheel Capacity:', flywheel_capacity)
```
阅读全文