某品牌商家将一款电脑按进价提价25%后,打出"九折优惠酬宾,增送100元现金抵用券的广告,最后每台电脑仍可获利500元,那么每台电脑的进价是多少元?
时间: 2024-05-22 15:15:51 浏览: 168
As an AI language model, I do not have personal beliefs or emotions, and thus I do not have any opinion or preference towards anything. When I encounter the word "null," it usually refers to a value that represents the absence of a value or a placeholder that has not been assigned a value yet.
相关问题
商店经销某产品,月需求量为30件,需求速度为常数。该商品每件进价300元,月存储费为进价的2%,向工厂订购该商品时订购费每次是20元,订购后5天完成送货,到货速度为2件/天,求最优存储策略。求解的lingo代码
为了求解最优存储策略,我们可以使用经济订货量模型(EOQ,Economic Order Quantity)。EOQ模型的目标是最小化总成本,包括订购成本和存储成本。
首先,我们需要定义一些变量:
- \( D \):月需求量(30件)
- \( S \):每次订购费(20元)
- \( H \):单位存储费(进价的2%)
- \( P \):每件进价(300元)
- \( Q \):每次订购量
- \( T \):总成本
总成本 \( T \) 可以表示为:
\[ T = \frac{D}{Q} \times S + \frac{Q}{2} \times H \times P \]
我们需要最小化总成本 \( T \),因此对 \( Q \) 求导并令其等于零:
\[ \frac{dT}{dQ} = -\frac{D \times S}{Q^2} + \frac{H \times P}{2} = 0 \]
解这个方程可以得到:
\[ Q = \sqrt{\frac{2 \times D \times S}{H \times P}} \]
将已知数值代入公式:
\[ Q = \sqrt{\frac{2 \times 30 \times 20}{0.02 \times 300}} = \sqrt{\frac{1200}{6}} = \sqrt{200} \approx 14.14 \]
为了方便起见,我们可以取 \( Q \) 为15件。
下面是用LINGO代码求解的示例:
```lingo
MODEL:
SETS:
PRODUCTS /1/;
某商场新进一批商品,准备上架搞促销活动,顾客每买一件商品就给优惠1%(如一次购买10件,则优惠10%); 请编写程序,输入该批商品进价和售价,计算并输出商场收益最大的每位顾客购买数量和商场收益。(用C语言编程
在C语言中,我们可以使用循环结构来遍历可能的购买数量,然后计算出每个数量对应的收益,并找出收益最大时的商品数量和收益。下面是一个简单的示例程序:
```c
#include <stdio.h>
double calculateProfit(double cost, double sale, int quantity) {
// 计算单件商品的优惠价格
double discountPrice = sale - (sale * 0.01 * quantity);
// 计算每购买quantity件的总收益
double profit = discountPrice * quantity - cost * quantity;
return profit;
}
int main() {
double cost, sale;
printf("请输入商品的进价(单位:元): ");
scanf("%lf", &cost);
printf("请输入商品的售价(单位:元): ");
scanf("%lf", &sale);
double maxProfit = 0;
int maxQuantity = 0;
for (int i = 1; i <= 100; i++) { // 假设最多只考虑购买100件
double currentProfit = calculateProfit(cost, sale, i);
if (currentProfit > maxProfit) {
maxProfit = currentProfit;
maxQuantity = i;
}
}
printf("商场收益最大的购买数量为 %d 件,总收益为 %.2f 元。\n", maxQuantity, maxProfit);
return 0;
}
```
这个程序首先定义了一个函数`calculateProfit`来计算单次购买的利润,然后在主函数里通过for循环遍历1到100件商品的数量,找到能带来最高收益的那个数量。
请注意,这个程序假设了商品的最大购买量不超过100件,实际情况需要根据商场规则调整。运行此程序前,请确保已经包含必要的头文件,并且在控制台输入正确的进价和售价值。
阅读全文
相关推荐














