pyspark dataframe将用户类型为cart的行对应的count的值和用户类型为fav的行对应的count的值相加
时间: 2024-05-12 19:16:06 浏览: 97
好的,请稍等,我需要一段时间处理一下。
(几秒钟后)
您可以使用以下的 PySpark 代码来实现您的需求:
```
from pyspark.sql.functions import sum
df = # 您的 DataFrame
result = df.groupBy().agg(sum('count').alias('total_count')).collect()[0]['total_count']
```
这样,结果 `result` 中就包含了所有用户类型为 "cart" 和 "fav" 的行对应的 `count` 值相加的结果。
相关问题
pyspark dataframe将fav行和cart行的值相加 得到一个新的行怎么弄
可以使用withColumn()函数创建新的一列,将fav行和cart行的值相加,示例代码如下:
```
from pyspark.sql.functions import col
df = df.withColumn('new_row', col('fav') + col('cart'))
```
其中,'new_row'是新创建的一列的名称,col()函数用于指定列名。
pyspark dataframe新建一行为 favcart 值为fav和cart行count列的值和
您好,这是一个关于 pyspark dataframe 的技术问题,我可以帮您回答。根据您的问题描述,您可以使用 pyspark dataframe 的 withColumn() 方法来实现,代码示例如下:
```
from pyspark.sql.functions import col
# 假设 fav 和 cart 列名分别为 fav_col 和 cart_col
df_new = df.withColumn("favcart", col("fav_col") + col("cart_col"))
```
这个方法会在原有的 dataframe 基础上增加一列名为 favcart 的新列,其值为 fav_col 列值和 cart_col 列值的和。希望我的回答对您有帮助。
阅读全文
相关推荐
















