利用语料eng和chn,分别计算英语字母、英语单词、汉字、汉语词的熵的代码
时间: 2023-05-22 09:06:53 浏览: 124
我可以回答计算英语字母、英语单词、汉字、汉语词的熵的代码问题。
英语字母熵的代码(使用Python 3):
```python
import math
def english_letters_entropy(text):
letter_count = {}
for c in text:
if c.isalpha():
if c not in letter_count:
letter_count[c] = 1
else:
letter_count[c] += 1
total_letters = sum(letter_count.values())
letter_probs = [count / total_letters for count in letter_count.values()]
entropy = -sum(p * math.log2(p) for p in letter_probs)
return entropy
# 示例使用
eng_text = "This is a sample text for calculating English letters entropy."
entropy = english_letters_entropy(eng_text)
print(f"Entropy of English letters in the text: {entropy}")
```
英语单词熵的代码(使用Python 3):
```python
import math
import re
def english_words_entropy(text):
word_count = {}
words = re.findall(r'\b\w+\b', text)
for word in words:
if word not in word_count:
word_count[word] = 1
else:
word_count[word] += 1
total_words = sum(word_count.values())
word_probs = [count / total_words for count in word_count.values()]
entropy = -sum(p * math.log2(p) for p in word_probs)
return entropy
# 示例使用
eng_text = "This is a sample text for calculating English words entropy."
entropy = english_words_entropy(eng_text)
print(f"Entropy of English words in the text: {entropy}")
```
汉字熵的代码(使用Python 3):
```python
import math
def chinese_chars_entropy(text):
char_count = {}
for char in text:
if ord(char) >= 0x4e00 and ord(char) <= 0x9fff:
if char not in char_count:
char_count[char] = 1
else:
char_count[char] += 1
total_chars = sum(char_count.values())
char_probs = [count / total_chars for count in char_count.values()]
entropy = -sum(p * math.log2(p) for p in char_probs)
return entropy
# 示例使用
chn_text = "这是一个计算汉字熵的示例文本。"
entropy = chinese_chars_entropy(chn_text)
print(f"Entropy of Chinese characters in the text: {entropy}")
```
汉语词熵的代码(使用Python 3):
```python
import math
import jieba
def chinese_words_entropy(text):
word_count = {}
words = jieba.lcut(text)
for word in words:
if len(word) > 1:
if word not in word_count:
word_count[word] = 1
else:
word_count[word] += 1
total_words = sum(word_count.values())
word_probs = [count / total_words for count in word_count.values()]
entropy = -sum(p * math.log2(p) for p in word_probs)
return entropy
# 示例使用
chn_text = "这是一个计算汉语词熵的示例文本。"
entropy = chinese_words_entropy(chn_text)
print(f"Entropy of Chinese words in the text: {entropy}")
```
以上是一些示例代码,实际中需要根据具体的语料和需求进行改造。
阅读全文