ResNet网络结构
时间: 2023-12-15 16:31:07 浏览: 78
ResNet是一种深度卷积神经网络,它的主要特点是使用了残差学习模块,可以有效地解决深度网络训练过程中的梯度消失和梯度爆炸问题。ResNet的网络结构由多个ResNet Block组成,每个ResNet Block包含多个卷积层和一个跳跃连接。跳跃连接将输入直接加到输出上,使得网络可以学习残差,从而更好地适应训练数据。
以下是ResNet50的网络结构示意图:
```python
# 输入层
input_layer = Input(shape=(224, 224, 3))
# 第一层卷积
x = Conv2D(filters=64, kernel_size=(7, 7), strides=(2, 2), padding='same')(input_layer)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='same')(x)
# conv2_x
x = resnet_block(x, filters=[64, 64, 256], s=1)
x = identity_block(x, filters=[64, 64, 256])
x = identity_block(x, filters=[64, 64, 256])
# conv3_x
x = resnet_block(x, filters=[128, 128, 512], s=2)
= identity_block(x, filters=[128, 128, 512])
x = identity_block(x, filters=[128, 128, 512])
x = identity_block(x, filters=[128, 128, 512])
# conv4_x
x = resnet_block(x, filters=[256, 256, 1024], s=2)
x = identity_block(x, filters=[256, 256, 1024])
x = identity_block(x, filters=[256, 256, 1024])
x = identity_block(x, filters=[256, 256, 1024])
x = identity_block(x, filters=[256, 256, 1024])
x = identity_block(x, filters=[256, 256, 1024])
# conv5_x
x = resnet_block(x, filters=[512, 512, 2048], s=2)
x = identity_block(x, filters=[512, 512, 2048])
x = identity_block(x, filters=[512, 512, 2048])
# 全局平均池化
x = AveragePooling2D(pool_size=(7, 7))(x)
# 输出层
x = Flatten()(x)
output_layer = Dense(units=1000, activation='softmax')(x)
# 构建模型
model = Model(inputs=input_layer, outputs=output_layer)
```
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![py](https://img-home.csdnimg.cn/images/20250102104920.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)