基于pytorch的自定义图像数据集mmd域对齐并绘制混淆矩阵散点图可视化
时间: 2023-08-18 12:05:02 浏览: 142
Pytorch 实现数据集自定义读取
首先,您需要准备两个图像数据集,分别为源域(source domain)和目标域(target domain)。然后,您需要使用pytorch加载这些数据集并进行预处理。具体步骤如下:
1. 安装必要的库
您需要安装以下库:
- torchvision
- numpy
- matplotlib
- sklearn
您可以使用以下命令安装它们:
```
pip install torchvision numpy matplotlib sklearn
```
2. 加载数据集
您需要使用pytorch的`ImageFolder`类加载数据集。该类会自动将文件夹中的图像文件加载为pytorch中的tensor,并将它们归一化为[0,1]范围内的值。
以下是一个加载数据集的示例代码:
```
from torchvision import transforms, datasets
# 定义数据预处理
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 加载源域数据集
source_dataset = datasets.ImageFolder('/path/to/source/dataset', transform=transform)
# 加载目标域数据集
target_dataset = datasets.ImageFolder('/path/to/target/dataset', transform=transform)
```
3. 使用MMD算法进行域对齐
您可以使用最大平均差异(Maximum Mean Discrepancy,MMD)算法来衡量源域和目标域之间的差异,并尝试对它们进行域对齐。
以下是一个使用MMD算法进行域对齐的示例代码:
```
import torch
from torch.autograd import Variable
import numpy as np
def mmd(source_features, target_features, kernel_mul=2.0, kernel_num=5):
batch_size = int(source_features.size()[0])
total = torch.cat([source_features, target_features], dim=0)
total0 = total.unsqueeze(0).expand(int(total.size(0)), int(total.size(0)), int(total.size(1)))
total1 = total.unsqueeze(1).expand(int(total.size(0)), int(total.size(0)), int(total.size(1)))
L2_distance = ((total0-total1)**2).sum(2)
if torch.cuda.is_available():
# 使用GPU加速
bandwidth = torch.sum(torch.exp(-1 * L2_distance / (2 * kernel_mul ** 2)).cuda()) - batch_size - batch_size
else:
bandwidth = torch.sum(torch.exp(-1 * L2_distance / (2 * kernel_mul ** 2))) - batch_size - batch_size
bandwidth /= (batch_size * batch_size)
bandwidth *= kernel_num / (kernel_num - 1)
bandwidth_list = [bandwidth * (kernel_mul ** i) for i in range(kernel_num)]
kernels = []
for bandwidth in bandwidth_list:
if torch.cuda.is_available():
# 使用GPU加速
kernels.append(torch.exp(-1 * L2_distance / (2 * bandwidth ** 2)).cuda())
else:
kernels.append(torch.exp(-1 * L2_distance / (2 * bandwidth ** 2)))
loss = 0.0
for kernel in kernels:
s1, s2 = kernel[:batch_size, :batch_size], kernel[batch_size:, batch_size:]
t1, t2 = kernel[:batch_size, batch_size:], kernel[batch_size:, :batch_size]
loss += torch.mean(s1 + s2 - t1 - t2)
return loss
# 定义模型
model = YourModel()
# 定义损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# 定义训练函数
def train(source_loader, target_loader, model, criterion, optimizer, epochs):
for epoch in range(epochs):
# 训练源域数据
model.train()
for i, (images, labels) in enumerate(source_loader):
images = Variable(images.cuda())
labels = Variable(labels.cuda())
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, epochs, i+1, len(source_loader), loss.item()))
# 计算MMD损失并进行域对齐
model.eval()
source_features = []
target_features = []
for images, labels in source_loader:
images = Variable(images.cuda())
features = model.features(images)
source_features.append(features.data.cpu())
for images, labels in target_loader:
images = Variable(images.cuda())
features = model.features(images)
target_features.append(features.data.cpu())
source_features = torch.cat(source_features, dim=0)
target_features = torch.cat(target_features, dim=0)
mmd_loss = mmd(source_features, target_features)
mmd_loss.backward()
optimizer.step()
# 训练模型并进行域对齐
train(source_loader, target_loader, model, criterion, optimizer, epochs)
```
4. 绘制混淆矩阵散点图可视化
最后,您可以使用sklearn库来计算混淆矩阵,并使用matplotlib库来绘制散点图可视化。
以下是一个绘制混淆矩阵散点图可视化的示例代码:
```
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
# 计算源域和目标域的预测结果
source_preds = []
for images, labels in source_loader:
images = Variable(images.cuda())
outputs = model(images)
_, preds = torch.max(outputs.data, 1)
source_preds.extend(preds.cpu().numpy().tolist())
target_preds = []
for images, labels in target_loader:
images = Variable(images.cuda())
outputs = model(images)
_, preds = torch.max(outputs.data, 1)
target_preds.extend(preds.cpu().numpy().tolist())
# 计算混淆矩阵
labels = list(source_dataset.class_to_idx.keys())
cm = confusion_matrix(source_preds, target_preds, labels=labels)
# 绘制散点图可视化
plt.figure(figsize=(8,8))
plt.scatter(cm[:,0], cm[:,1], c=cm[:,2], cmap='coolwarm')
plt.colorbar()
plt.xlabel('Source domain')
plt.ylabel('Target domain')
plt.show()
```
这就是一个完整的自定义图像数据集mmd域对齐并绘制混淆矩阵散点图可视化的示例代码。
阅读全文