【问题描述】 设计与实现K-Means聚类与K-NN分类算法的基本输入与输出 【输入形式】 键盘输入 第1行:m(样本数), n(特征维数), s(类别数,K-Means算法该项为0) 接下来m行(每行n列)输入样本; 接下来1行输入n项特征的名称; 当是s>0,输入一行s项类别的名称; 输入K值 输入未知样本 【输出形式】 给出KNN分类的类别名称 【样例输入】 12 4 2 228 134 20 11 0 245 134 10 40 0 200 167 12 27 0 170 150 7 8 0 100 167 20 14 0 150 117 7 6 1 120 133 10 26 1 160 100 5 10 1 185 115 5 19 1 170 125 6 4 1 165 142 5 3 1 185 108 2 12 1 铜蓝蛋白 蓝色反应 吲哚乙酸 中性硫化物 阳性 阴性 1 100 117 7 2 【样例输出】 阴性

时间: 2024-04-29 11:19:59 浏览: 12
【输入形式】 键盘输入 第1行:m(样本数), n(特征维数), s(类别数,K-Means算法该项为0) 接下来m行(每行n列)输入样本; 接下来1行输入n项特征的名称; 当是s>0,输入一行s项类别的名称; 输入K值 输入未知样本 【输出形式】 给出KNN分类的类别名称 【样例输入】 12 4 2 228 134 20 11 0 245 134 10 40 0 200 167 12 27 0 170 150 7 8 0 100 167 20 14 0 150 117 7 6 1 120 133 10 26 1 160 100 5 10 1 185 115 5 19 1 170 125 6 4 1 165 142 5 3 1 185 108 2 12 1 铜蓝蛋白 蓝色反应 吲哚乙酸 中性硫化物 阳性 阴性 1 100 117 7 2 【样例输出】 阴性
相关问题

python实现k-means聚类算法

### 回答1: K-means聚类算法是一种常见的无监督学习算法,用于将数据集分成k个不同的簇。Python中可以使用scikit-learn库中的KMeans类来实现K-means聚类算法。具体步骤如下: 1. 导入KMeans类和数据集 ```python from sklearn.cluster import KMeans from sklearn.datasets import make_blobs ``` 2. 生成数据集 ```python X, y = make_blobs(n_samples=100, centers=3, random_state=42) ``` 3. 创建KMeans对象并进行拟合 ```python kmeans = KMeans(n_clusters=3, random_state=42) kmeans.fit(X) ``` 4. 获取聚类结果 ```python labels = kmeans.labels_ ``` 5. 可视化聚类结果 ```python import matplotlib.pyplot as plt plt.scatter(X[:, ], X[:, 1], c=labels) plt.show() ``` 以上就是Python实现K-means聚类算法的基本步骤。 ### 回答2: K-means聚类算法是一种常见的无监督学习算法,它将n个样本分成k个簇,每个簇对应着一些数据点,使得同一簇内的数据点之间的相似度尽可能高,而不同簇的数据点之间的相似度尽可能低。Python是一种广泛使用的编程语言,也是进行K-means聚类的好选择。 以下是Python实现K-means聚类算法的步骤: 1. 导入数据集:将要聚类的数据集导入,可以是csv文件或者Excel文件,也可以是Python中自带的sklearn.datasets等数据集模块中的数据集。 2. 选择K值:决定将数据分成几个簇。可以通过手肘法或者轮廓系数法找到最优的K值,手肘法就是将数据集按照K值分割成K个簇并计算每个簇的误差平方和,一般来说误差平方和随簇数量的增加而减小,随着簇数量增加,在某个点后,曲线的下降趋势会减缓。轮廓系数法可以直观地描述每个数据点与其所处簇的相似程度和不同簇的相似程度,即同一簇内的相似度高,与其他簇的相似度低。 3. 初始化聚类中心:从数据集中随机选择K个点作为聚类中心。 4. 簇分配:对于每个数据点,计算其与每个聚类中心的距离,将其分配到距离最近的簇中。 5. 聚类中心更新:重新计算每个簇的聚类中心,即将簇内所有数据点的坐标进行平均,得到新的聚类中心。 6. 重复步骤4-5,直到聚类中心不再改变或达到最大迭代次数。 7. 输出簇:输出每个簇包含的数据点。 Python实现K-means聚类算法的示例代码: ```python from sklearn.cluster import KMeans from sklearn.datasets import make_blobs # 生成数据集 X, y = make_blobs(n_samples=500, centers=3, random_state=42) # 初始化KMeans聚类模型 model = KMeans(n_clusters=3, random_state=42) # 训练模型 model.fit(X) # 输出每个簇的聚类中心坐标 print("Cluster centers:", model.cluster_centers_) # 输出每个数据点所属的簇 print("Cluster labels:", model.labels_) ``` 以上就是Python实现K-means聚类算法的基本步骤和示例代码。在实际应用中,我们可以根据数据集的特点和需求对算法进行改进和优化,使得聚类效果更加准确和高效。 ### 回答3: K-means聚类算法是机器学习中常用的无监督学习方法之一,可以将一组数据集划分为K个簇(cluster),簇与簇之间的差异最小。Python提供了很多库,如sklearn、scipy.cluster.vq、numpy等可以实现K-means聚类算法,这里以sklearn库为例进行讲解。 首先,需要导入sklearn库中的KMeans模块,代码如下: ``` from sklearn.cluster import KMeans ``` 接着,需要确定K值,即簇的数量。可以通过手肘法(Elbow Method)来选择最优K值。手肘法是通过绘制不同K值对应的聚类误差值(即SSE,Sum of Squared Errors)与K值的折线图,确定最优的K值。代码如下: ``` import matplotlib.pyplot as plt from scipy.spatial.distance import cdist import numpy as np # 生成数据集 X = np.random.uniform(low=-10, high=10, size=(100, 2)) # 计算不同K值对应的SSE K_range = range(1, 10) sse = [] for k in K_range: kmeans = KMeans(n_clusters=k, random_state=0).fit(X) sse.append(sum(np.min(cdist(X, kmeans.cluster_centers_, 'euclidean'), axis=1)) / X.shape[0]) # 绘制折线图 plt.plot(K_range, sse, 'bx-') plt.xlabel('Number of clusters') plt.ylabel('SSE') plt.title('Elbow Method For Optimal k') plt.show() ``` 在绘制的折线图中,选择拐点处的K值作为最优的簇数。 选择完簇数后,就可以利用KMeans模块进行聚类了。代码如下: ``` # 将数据集聚类为3个簇 kmeans = KMeans(n_clusters=3, random_state=0).fit(X) # 绘制聚类结果图 plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_) plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], marker='x', color='black', s=100, linewidths=3) plt.title('K-means Clustering') plt.show() ``` 其中,kmeans.labels_为数据点所被聚到的簇的标号,kmeans.cluster_centers_为聚类中心。 以上就是利用Python实现K-means聚类算法的基本步骤,通过手肘法选择最优簇数,然后利用KMeans模块进行聚类,最后绘制聚类结果图。

8.3 k-means聚类算法的优缺点与推广

k-means聚类算法是一种常用的无监督学习算法,它将数据集划分为K个簇,每个簇内的数据点彼此相似,而不同簇内的数据点则相异。这个算法的优缺点如下: 优点: 1. 算法简单易懂,容易实现; 2. 算法效率高,适用于大规模数据集; 3. 对于处理凸型、线性可分或者高维数据集效果较好。 缺点: 1. k值的选取需要先验知识或者试错,对结果影响较大; 2. 对于不同密度、尺寸、非凸形状的簇效果不佳; 3. 对于离群点和噪声比较敏感。 推广: k-means聚类算法已经被广泛应用于图像压缩、文本分类、数据挖掘等领域。在实际应用中,可以通过改进算法来解决算法的缺点,例如:k-means++、Bisecting k-means、Spectral clustering等。此外,可以与其他算法结合使用,以达到更好的效果。相关问题如下:

相关推荐

最新推荐

recommend-type

详解Java实现的k-means聚类算法

主要介绍了详解Java实现的k-means聚类算法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
recommend-type

k-means 聚类算法与Python实现代码

k-means 聚类算法思想先随机选择k个聚类中心,把集合里的元素与最近的聚类中心聚为一类,得到一次聚类,再把每一个类的均值作为新的聚类中心重新聚类,迭代n次得到最终结果分步解析 一、初始化聚类中心 首先随机...
recommend-type

python基于K-means聚类算法的图像分割

主要介绍了python基于K-means聚类算法的图像分割,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

Python——K-means聚类分析及其结果可视化

K-Means是聚类算法的一种,通过距离来判断数据点间的相似度并据此对数据进行聚类。 1 聚类算法 科学计算中的聚类方法 方法名称 参数 可伸缩性 用例 几何形状(使用的指标) K-Means number of ...
recommend-type

python中实现k-means聚类算法详解

1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好。...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB正态分布协方差分析:揭示正态分布变量之间的协方差

![MATLAB正态分布协方差分析:揭示正态分布变量之间的协方差](https://site.cdn.mengte.online/official/2021/11/20211128213137293.png) # 1. 正态分布概述 正态分布,又称高斯分布,是统计学中最重要的连续概率分布之一。它广泛应用于自然科学、社会科学和工程领域。 正态分布的概率密度函数为: ``` f(x) = (1 / (σ√(2π))) * exp(-(x - μ)² / (2σ²)) ``` 其中: - μ:正态分布的均值 - σ:正态分布的标准差 - π:圆周率 正态分布具有以下特性: - 对称性:
recommend-type

我正在开发一款个人碳足迹计算app,如何撰写其需求分析文档,请给我一个范例

为了更全面、清晰地定义个人碳足迹计算app的需求,需求分析文档应该包含以下内容: 1.项目简介:对该app项目的概述及目标进行说明。 2.用户分析:包括目标用户群、用户需求、行为等。 3.功能需求:对app的基本功能进行定义,如用户登录、数据录入、数据统计等。 4.非功能需求:对使用app的性能和质量等进行定义,如界面设计、数据安全、可扩展性等。 5.运行环境:包括app的开发环境和使用环境。 下面是一个范例: 需求分析文档 1. 项目简介 该app项目旨在为用户提供一款方便、易用、可定制的个人碳足迹计算平台,以促进环保和可持续性发展。 2. 用户分析 目标用户群:全球关
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。