基于spark关于体检数据的处理与分析代码
时间: 2023-11-27 18:05:58 浏览: 88
基于Spark的数据处理分析系统的设计与实现
好的,这里提供一个基于Spark的体检数据处理与分析的示例代码,供参考:
1. 数据清洗
```scala
val rawData = sc.textFile("hdfs://path/to/rawdata")
val cleanedData = rawData.filter(line => line.split(",").length == 10)
```
2. 数据预处理
```scala
import org.apache.spark.ml.feature.{VectorAssembler, StandardScaler}
val assembler = new VectorAssembler()
.setInputCols(Array("age", "height", "weight", "bp", "bmi"))
.setOutputCol("features")
val dataWithFeatures = assembler.transform(cleanedData)
val scaler = new StandardScaler()
.setInputCol("features")
.setOutputCol("scaledFeatures")
.setWithStd(true)
.setWithMean(false)
val scaledData = scaler.fit(dataWithFeatures).transform(dataWithFeatures)
```
3. 数据分析
```scala
import org.apache.spark.sql.functions._
val summary = scaledData.agg(
min("scaledFeatures"), max("scaledFeatures"), mean("scaledFeatures"), stddev("scaledFeatures")
)
val kmeans = new KMeans()
.setK(3)
.setSeed(1L)
.setFeaturesCol("scaledFeatures")
.setPredictionCol("cluster")
val model = kmeans.fit(scaledData)
val clusteredData = model.transform(scaledData)
val counts = clusteredData.groupBy("cluster").count()
```
4. 结果可视化
```scala
import com.mongodb.spark._
import com.mongodb.spark.config._
val mongoConfig = ReadConfig(Map("uri" -> "mongodb://localhost:27017/", "database" -> "test", "collection" -> "clustered_data"))
MongoSpark.save(clusteredData, mongoConfig)
counts.show()
```
以上代码只是简单示例,具体实现还需要根据实际情况进行调整和扩展。
阅读全文