pytorch ssim损失函数
时间: 2023-09-01 10:11:02 浏览: 193
Simple-SSIM-Loss:使用PyTorch简单而天真地实现结构相似性损失
在PyTorch中,可以使用 `torch_ssim` 函数来计算结构相似性指数(SSIM)。首先,需要导入相关的库:
```python
import torch
import torch.nn.functional as F
from torch.autograd import Variable
from math import exp
```
然后,可以定义 `ssim` 函数:
```python
def ssim(img1, img2, window_size=11, size_average=True):
# Set some constants
C1 = (0.01 ** 2)
C2 = (0.03 ** 2)
# Create a 1D Gaussian kernel
window = torch.Tensor(gaussian(window_size, 1.5)).unsqueeze(1).unsqueeze(2)
window = window / window.sum()
# Calculate means
mu1 = F.conv2d(img1, window, padding=window_size//2, groups=img1.size(1))
mu2 = F.conv2d(img2, window, padding=window_size//2, groups=img1.size(1))
# Calculate variances and covariances
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size//2, groups=img1.size(1)) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size//2, groups=img1.size(1)) - mu2_sq
sigma12 = F.conv2d(img1 * img2, window, padding=window_size//2, groups=img1.size(1)) - mu1_mu2
# Calculate SSIM formula variables
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1).mean(1).mean(1)
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
return gauss / gauss.sum()
```
在这个函数中,我们首先创建一个1D高斯核,然后计算两个图像的均值和方差,并计算它们之间的协方差。最后,使用SSIM公式计算两个图像之间的相似度。如果 `size_average` 参数设置为True,则函数返回所有像素的平均值,否则返回每个像素的值。
可以使用以下代码调用函数:
```python
img1 = Variable(torch.rand(1, 3, 256, 256))
img2 = Variable(torch.rand(1, 3, 256, 256))
if torch.cuda.is_available():
img1 = img1.cuda()
img2 = img2.cuda()
ssim_value = ssim(img1, img2)
print(ssim_value)
```
这将打印出两个图像之间的SSIM值。
阅读全文