32×32的灰度照片,lenet5卷积神经网络代码
时间: 2023-12-13 19:05:03 浏览: 73
毕业设计-参考LENET-5模型,将恶意软件转化为灰度图,通过卷积神经网络实现了恶意软件检测分类,准确率达98%+源代码+文档
下面是一个简单的示例代码,用于训练一个基于LeNet-5的卷积神经网络来对32x32的灰度图像进行分类。该代码使用PyTorch框架,您需要安装PyTorch才能运行它。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
# 定义LeNet-5模型
class LeNet5(nn.Module):
def __init__(self):
super(LeNet5, self).__init__()
self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=2)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool1(torch.relu(self.conv1(x)))
x = self.pool2(torch.relu(self.conv2(x)))
x = x.view(-1, 16*5*5)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# 加载数据集
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transforms.Compose([
transforms.Grayscale(),
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5])
]))
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.Compose([
transforms.Grayscale(),
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5])
]))
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=128, shuffle=False)
# 定义训练参数
num_epochs = 10
learning_rate = 0.001
# 初始化模型和优化器
model = LeNet5()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# 前向传播
outputs = model(images)
# 计算损失函数
loss = nn.CrossEntropyLoss()(outputs, labels)
# 反向传播并更新参数
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 输出训练状态信息
if (i+1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item()))
# 测试模型
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))
```
这个例子使用了CIFAR-10数据集,您可以将其替换为您自己的32x32灰度图像数据集。请注意,您可能需要根据您的数据集进行一些微调,例如更改批量大小、学习率和训练时期数等。
阅读全文