Im0 = rgb2gray(imread([int2str(i), '.jpg'],'jpg'));
时间: 2024-01-24 20:04:53 浏览: 50
This line of code reads in an image file (in JPEG format) with a file name that is the integer value of the variable i, and converts it from RGB format to grayscale format. The resulting grayscale image is stored in the variable Im0.
相关问题
%4多目标轴2端点定位 startf=353;endf=1500; for i=startf:1:endf I1 =read(xyloObj,i);%读取每一帧 % figure,imshow(I1); I1=im2double(rgb2gray(I1))-Ibj;%减去背景帧 bw1=im2bw(I1,25/255);%二值化处理,灰度值大于25设置为白色,小于等于25设置为黑色 bwAreaOpenBW =bwareaopen(bw1,10);%将二值图像bw1中的小区域(面积小于等于10个像素)去除,得到一个新的二值图像bwAreaOpenBW。这个操作可以消除二值图像中一些不必要的小区域,保留需要的大区域 [L,n]=bwlabel(bwAreaOpenBW,8); for j=1:1:n [r, c] = find(L==j); rc = [r c]; u=size(r); zhou2=fitlm(rc(:,2),rc(:,1)); %拟合直线 b1(i,j)=zhou2.Coefficients.Estimate(1,1); b2(i,j)=zhou2.Coefficients.Estimate(2,1); minzhi(i,j)=min(rc(:,2)); maxzhi(i,j)=max(rc(:,2)); % y = minzhi(i,j):1:maxzhi(i,j); % x = b1(i,j)+b2(i,j).*y; % plot(y,x);hold on; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%2个端点 duan1x(i,j)=b1(i,j)+b2(i,j).*minzhi(i,j); duan1y(i,j)=minzhi(i,j); duan2x(i,j)=b1(i,j)+b2(i,j).*maxzhi(i,j); duan2y(i,j)=maxzhi(i,j); % plot(minzhi,b1+b2.*minzhi,'r*');hold on; % plot(maxzhi,b1+b2.*maxzhi,'r*');hold on; end end帮我改为vs的程序,用opencv库
下面是使用OpenCV库的C++代码实现多目标轴2端点定位:
```c++
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
int main() {
int startf = 353, endf = 1500; // 起始和结束帧数
Mat Ibj = imread("background.jpg"); // 读取背景帧
Mat I1, bw1, bwAreaOpenBW, L;
vector<vector<Point>> contours;
for (int i = startf; i <= endf; i++) {
stringstream ss;
ss << "test" << i << ".jpg"; // 读取当前帧
I1 = imread(ss.str());
Mat gray;
cvtColor(I1, gray, COLOR_BGR2GRAY);
gray.convertTo(gray, CV_64F);
gray -= Ibj; // 减去背景帧
threshold(gray, bw1, 25, 255, THRESH_BINARY); // 二值化处理
morphologyEx(bw1, bwAreaOpenBW, MORPH_OPEN, Mat(), Point(-1, -1), 1); // 开运算
int n = connectedComponents(bwAreaOpenBW, L); // 连通区域标记
for (int j = 1; j <= n; j++) {
Mat temp = Mat::zeros(L.rows, L.cols, CV_8UC1);
for (int r = 0; r < L.rows; r++) {
for (int c = 0; c < L.cols; c++) {
if (L.at<int>(r, c) == j) {
temp.at<uchar>(r, c) = 255;
}
}
}
findContours(temp, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE); // 查找轮廓
if (contours[0].size() < 10) continue; // 去除小轮廓
RotatedRect rect = fitEllipse(contours[0]); // 拟合椭圆
Point2f points[4];
rect.points(points); // 获取旋转矩形的四个顶点
float k = (points[1].y - points[0].y) / (points[1].x - points[0].x); // 计算斜率
float b = points[0].y - k * points[0].x; // 计算截距
int minzhi = min(points[0].x, points[1].x);
int maxzhi = max(points[0].x, points[1].x);
Point2f duan1(minzhi, k * minzhi + b); // 第一个端点
Point2f duan2(maxzhi, k * maxzhi + b); // 第二个端点
line(I1, duan1, duan2, Scalar(0, 0, 255), 2); // 绘制直线
imshow("image", I1);
waitKey(1);
}
}
return 0;
}
```
需要注意的是,由于没有提供测试数据,代码中的图片路径需要根据实际情况进行修改。
阅读全文