import numpy as np import matplotlib.pyplot as plt import math def logistic_map(x, r): return r * x * (1 - x) def bifurcation_diagram(): r_values = np.arange(0, 4, 0.001) # 参数范围 x_values = [] # 存储结果的列表 for r in r_values: x = 0.2 # 初始值 for _ in range(1000): # 忽略前1000个迭代点,使系统达到稳定状态 x = logistic_map(x, r) for _ in range(100): # 取后100个点作为结果 x = logistic_map(x, r) x_values.append(x) plt.figure(figsize=(10, 6)) plt.scatter(r_values, x_values, s=0.5, marker='.', color='black') plt.xlabel('r') plt.ylabel('x') plt.title('Bifurcation Diagram of Logistic Map') plt.show() bifurcation_diagram()
时间: 2024-04-18 11:26:25 浏览: 69
你的代码看起来正确,可以用于绘制Logistic映射的分岔图。这个分岔图展示了Logistic映射在参数范围内的稳定点和周期点的分布情况。
需要注意的是,分岔图的横轴是参数r的取值范围,纵轴是系统状态x的值。通过观察分岔图,可以发现当参数r在一定范围内变化时,系统状态x会呈现出周期倍增的现象,即出现稳定点、周期2点、周期4点等等。而当r继续增大时,系统进入混沌状态,x的值变得无规律、不可预测。
运行你提供的代码,就可以得到Logistic映射的分岔图。你可以通过调整参数范围和迭代次数来观察分岔图的不同特征。希望这可以帮助你理解和使用混沌映射的分岔图。
相关问题
import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn import metrics import matplotlib.pyplot as plt
这段代码导入了 pandas、numpy、scikit-learn 和 matplotlib.pyplot 库中的一些常用模块和函数。
- `import pandas as pd` 导入了 pandas 库,并将其重命名为 pd,用于数据处理和分析。
- `import numpy as np` 导入了 numpy 库,并将其重命名为 np,用于数值计算和数组操作。
- `from sklearn.model_selection import train_test_split` 导入了 scikit-learn 库中的 train_test_split 函数,用于将数据集拆分为训练集和测试集。
- `from sklearn.linear_model import LogisticRegression` 导入了 scikit-learn 库中的逻辑回归模型(LogisticRegression),用于进行分类任务。
- `from sklearn import metrics` 导入了 scikit-learn 库中的 metrics 模块,用于评估模型性能。
- `import matplotlib.pyplot as plt` 导入了 matplotlib 库中的 pyplot 模块,并将其重命名为 plt,用于绘制数据可视化图形。
这段代码的目的是导入所需的库和模块,以便在后续的代码中使用它们进行数据处理、模型训练和评估以及结果可视化等操作。
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt from termcolor import colored as cl import itertools from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier from sklearn.neural_network import MLPClassifier from sklearn.ensemble import VotingClassifier # 定义模型评估函数 def evaluate_model(y_true, y_pred): accuracy = accuracy_score(y_true, y_pred) precision = precision_score(y_true, y_pred, pos_label='Good') recall = recall_score(y_true, y_pred, pos_label='Good') f1 = f1_score(y_true, y_pred, pos_label='Good') print("准确率:", accuracy) print("精确率:", precision) print("召回率:", recall) print("F1 分数:", f1) # 读取数据集 data = pd.read_csv('F:\数据\大学\专业课\模式识别\大作业\数据集1\data clean Terklasifikasi baru 22 juli 2015 all.csv', skiprows=16, header=None) # 检查数据集 print(data.head()) # 划分特征向量和标签 X = data.iloc[:, :-1] y = data.iloc[:, -1] # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 6. XGBoost xgb = XGBClassifier(max_depth=4) y_test = np.array(y_test, dtype=int) xgb.fit(X_train, y_train) xgb_pred = xgb.predict(X_test) print("\nXGBoost评估结果:") evaluate_model(y_test, xgb_pred)
这段代码实现了一个使用XGBoost算法进行分类的机器学习模型,并对该模型进行评估。具体步骤如下:
1. 导入需要的库:numpy、pandas、sklearn等。
2. 定义模型评估函数:evaluate_model(y_true, y_pred),该函数用于计算模型预测结果的准确率、精确率、召回率和F1分数。
3. 读取数据集:使用pandas库的read_csv()函数读取数据集。
4. 划分特征向量和标签:将数据集划分为特征向量X和标签y。
5. 划分训练集和测试集:使用sklearn库的train_test_split()函数将数据集划分为训练集和测试集。
6. 使用XGBoost算法进行分类:使用XGBClassifier类构建XGBoost分类器,并使用fit()函数将训练集拟合到该分类器中。然后,使用predict()函数对测试集进行预测,并将预测结果存储在xgb_pred中。
7. 对模型进行评估:使用evaluate_model()函数对模型进行评估,并输出准确率、精确率、召回率和F1分数等评估结果。
需要注意的是:该代码中的数据集路径可能需要修改为本地数据集路径。
阅读全文