我需要 卷积神经网络图像识别 的 代码
时间: 2023-10-16 10:05:36 浏览: 86
利用卷积神经网络实现图像的识别并将代码部署在树莓派中实现,使用果蔬图像数据集训练,可以达到随机输入单张果蔬图片,返回图片分类结果
5星 · 资源好评率100%
以下是一个简单的卷积神经网络图像识别代码示例,使用Keras库:
```python
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
# 训练和测试数据集分成输入和输出
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# 确定输入图像的维度
img_rows, img_cols = 28, 28
# 根据Keras后端,重塑数据
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
# 将输入数据转换为float类型,并将像素值标准化为0到1之间的值
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
# 将输出标签转换为分类矩阵
num_classes = 10
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
# 建立卷积神经网络模型
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
# 编译模型并训练
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
batch_size = 128
epochs = 12
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
# 评估模型
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```
这个模型使用了2个卷积层和2个全连接层,以及池化和Dropout层来减少过拟合。它在MNIST数据集上进行训练和测试,该数据集包含手写数字图像,并且它的目标是将每个图像分类为0到9之间的数字。
阅读全文