def play_once(env, policy): total_reward = 0 state = env.reset() while True: loc = np.unravel_index(state, env.shape) print('状态 = {}, 位置 = {}'.format(state, loc), end='') action = np.random.choice(env.nA, p=policy[state]) state, reward, done, _ = env.step(action) print('动作 = {}, 奖励 = {}'.format(action, reward)) total_reward += reward if done: break return total_reward
时间: 2024-04-08 16:36:17 浏览: 84
Writeenvfile.zip_env_kraken_kraken mode_site:www.pudn.com_writee
这是一个用于玩一局游戏的函数。它接受两个参数:env表示游戏环境,policy表示策略。
函数的主要部分是一个循环,其中不断选择动作并更新状态,直到游戏结束。在每个循环迭代中,函数会输出当前状态和位置,选择一个动作(根据策略),执行该动作并观察奖励。同时,函数会累积总奖励,直到游戏结束。最后,函数返回总奖励。
请注意,这个函数使用了numpy库中的一些函数和数组操作。它假设环境env具有以下属性:shape表示状态空间形状,nA表示动作空间大小,reset()方法用于重置环境状态,step()方法用于执行动作并观察结果。
如果你有任何关于这个函数的问题或需要进一步解释,请随时提问。
阅读全文