如何利用ORL人脸库结合LDA(线性判别分析)进行数据降维,并运用感知器的最大值判决准则来实现多类人脸识别的Python代码示例?
时间: 2024-10-23 10:17:12 浏览: 34
使用ORL人脸库结合LDA(线性判别分析)进行数据降维并应用最大值判决准则,首先需要对数据进行预处理,然后训练LDA模型进行降维,最后使用感知器算法进行分类。以下是Python代码的一个简化示例:
```python
# 导入所需库
import numpy as np
from sklearn.decomposition import LinearDiscriminantAnalysis as LDA
from sklearn.linear_model import Perceptron
from sklearn.datasets import fetch_lfw_people
from sklearn.preprocessing import StandardScaler
# 加载ORL人脸数据集
lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=True)
X = lfw_people.data
y = lfw_people.target
# 数据标准化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
# 进行LDA降维
lda = LDA(n_components=50) # 设置降维后的维度数
X_train_lda = lda.fit_transform(X_train, y_train)
X_test_lda = lda.transform(X_test)
# 初始化感知器模型
perceptron = Perceptron(max_iter=100, tol=None)
# 训练感知器模型
perceptron.fit(X_train_lda, y_train)
# 预测测试集
predictions = perceptron.predict(X_test_lda)
# 最大值判决准则评估
max_value = max(predictions, key=predictions.count)
accuracy = predictions.tolist().count(max_value) / len(predictions)
print(f"Accuracy with maximum value criterion: {accuracy * 100:.2f}%")
#
阅读全文