多目标灰狼算法matlab代码
时间: 2023-11-01 22:54:15 浏览: 129
以下是多目标灰狼算法的Matlab代码示例:
```
% 多目标灰狼算法
% 问题:多目标函数优化
% 作者:Xingjian Dong
% 日期:2021年4月
clc;
clear;
close all;
%% 参数设置
nPop = 20; % 种群大小
nVar = 2; % 变量个数
nObj = 2; % 目标个数
maxGen = 100; % 最大迭代次数
alpha = 0.5; % 追随者参数
beta = 0.8; % 领袖参数
delta = 0.1; % 步长缩放参数
%% 初始化种群
pop = repmat(struct('x', zeros(1, nVar), 'f', zeros(1, nObj)), nPop, 1);
for i = 1:nPop
pop(i).x = unifrnd(-10, 10, [1, nVar]);
pop(i).f = MultiObjectiveFunc(pop(i).x);
end
%% 迭代优化
for gen = 1:maxGen
% 计算适应度
F = [pop.f];
F1 = F(1, :);
F2 = F(2, :);
% 绘制种群分布图
figure(1);
plot(F1, F2, 'o');
xlabel('f1');
ylabel('f2');
title(['Generation ', num2str(gen)]);
drawnow;
% 非支配排序和拥挤度计算
[pop, frontNo, crowdingDis] = NonDominatedSortingAndCrowdingDistance(pop, nPop);
% 选择新一代
popNew = repmat(struct('x', zeros(1, nVar), 'f', zeros(1, nObj)), nPop, 1);
k = 1;
while k <= nPop
% 选择父代
p = TournamentSelection(pop, frontNo, crowdingDis);
% 生成子代
if rand < alpha % 追随者
popNew(k).x = p.x + delta * randn(1, nVar);
else % 领袖
% 找到领袖
I = find(frontNo == 1);
[~, J] = min(F2(I));
pBest = pop(I(J));
% 生成子代
popNew(k).x = p.x + beta * (pBest.x - p.x) + delta * randn(1, nVar);
end
% 限制变量范围
popNew(k).x = max(popNew(k).x, -10);
popNew(k).x = min(popNew(k).x, 10);
% 计算适应度
popNew(k).f = MultiObjectiveFunc(popNew(k).x);
k = k + 1;
end
% 合并父代和子代种群
pop = [pop; popNew];
% 非支配排序和拥挤度计算
[pop, frontNo, crowdingDis] = NonDominatedSortingAndCrowdingDistance(pop, 2 * nPop);
% 保留前nPop个非支配解
pop = pop(frontNo <= nPop);
end
%% 结果分析
% 计算适应度
F = [pop.f];
F1 = F(1, :);
F2 = F(2, :);
% 绘制Pareto前沿图
figure(2);
plot(F1, F2, 'o');
xlabel('f1');
ylabel('f2');
title('Pareto Front');
grid on;
```
其中,`MultiObjectiveFunc` 为多目标函数,需要根据具体问题进行定义。
阅读全文