遗传算法 python 避障
时间: 2023-09-19 14:07:01 浏览: 113
遗传算法是一种优化算法,可以用于解决许多问题,包括避障问题。在避障问题中,我们可以将每个个体看作是一个行走路径,通过适应度函数来评估每条路径的好坏程度。
以下是一个简单的遗传算法 python 代码示例,用于解决避障问题:
```python
import random
# 定义迷宫地图,其中0表示空地,1表示障碍物
maze = [
[0, 0, 0, 0, 1],
[1, 0, 1, 0, 0],
[0, 0, 1, 0, 1],
[0, 1, 0, 0, 0],
[0, 0, 0, 1, 0]
]
# 定义每个个体的染色体长度
chromosome_length = 20
# 定义种群大小
population_size = 50
# 定义交叉概率和变异概率
crossover_probability = 0.8
mutation_probability = 0.1
# 定义适应度函数
def fitness_function(chromosome):
# 将染色体转换成路径
path = []
for i in range(0, chromosome_length, 2):
x = chromosome[i]
y = chromosome[i + 1]
if x < 0 or x >= len(maze) or y < 0 or y >= len(maze[0]) or maze[x][y] == 1:
break
path.append((x, y))
# 计算路径长度作为适应度
return len(path)
# 定义选择函数,采用轮盘赌选择
def selection(population):
fitness_sum = sum(fitness_function(chromosome) for chromosome in population)
pointer = random.uniform(0, fitness_sum)
fitness_cumulative = 0
for chromosome in population:
fitness_cumulative += fitness_function(chromosome)
if fitness_cumulative >= pointer:
return chromosome
# 定义交叉函数,采用单点交叉
def crossover(chromosome1, chromosome2):
if random.random() < crossover_probability:
point = random.randint(1, chromosome_length - 1)
chromosome1_new = chromosome1[:point] + chromosome2[point:]
chromosome2_new = chromosome2[:point] + chromosome1[point:]
return chromosome1_new, chromosome2_new
else:
return chromosome1, chromosome2
# 定义变异函数,采用随机变异
def mutation(chromosome):
if random.random() < mutation_probability:
point = random.randint(0, chromosome_length - 1)
chromosome[point] = random.randint(0, len(maze) - 1)
chromosome[point + 1] = random.randint(0, len(maze[0]) - 1)
return chromosome
else:
return chromosome
# 初始化种群
population = []
for i in range(population_size):
chromosome = [random.randint(0, len(maze) - 1) for j in range(chromosome_length)]
population.append(chromosome)
# 迭代
for generation in range(100):
# 评估适应度
fitnesses = [fitness_function(chromosome) for chromosome in population]
# 打印当前最优解
best_fitness = max(fitnesses)
best_chromosome = population[fitnesses.index(best_fitness)]
best_path = []
for i in range(0, chromosome_length, 2):
x = best_chromosome[i]
y = best_chromosome[i + 1]
if x < 0 or x >= len(maze) or y < 0 or y >= len(maze[0]) or maze[x][y] == 1:
break
best_path.append((x, y))
print("Generation:", generation, "Best Path:", best_path)
# 选择、交叉、变异
new_population = []
for i in range(population_size):
chromosome1 = selection(population)
chromosome2 = selection(population)
chromosome1_new, chromosome2_new = crossover(chromosome1, chromosome2)
chromosome1_new = mutation(chromosome1_new)
chromosome2_new = mutation(chromosome2_new)
new_population.append(chromosome1_new)
new_population.append(chromosome2_new)
population = new_population
```
在上面的代码中,我们定义了一个5x5的迷宫地图,其中0代表空地,1代表障碍物。我们的个体是一个长度为20的染色体,其中每两个基因代表一个坐标,表示路径上的一个点。我们使用轮盘赌选择、单点交叉和随机变异来生成新的种群,并计算每个个体的适应度函数来评估其好坏程度。最后,我们迭代100代,并输出每代的最优路径。
这段代码可以解决简单的避障问题,但是对于复杂的地图和动态的障碍物,可能需要更复杂的算法来解决。
阅读全文