DCNv2的代码
时间: 2023-07-03 09:23:29 浏览: 403
DCNv2-pytorch-1.7.zip
以下是使用PyTorch实现的DCNv2的代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class DeformConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=1, groups=1, deform_groups=1, bias=False):
super(DeformConv2d, self).__init__()
self.offset_conv = nn.Conv2d(in_channels, deform_groups * 2 * kernel_size * kernel_size, kernel_size=kernel_size, stride=stride, padding=padding, bias=True)
self.scale_conv = nn.Conv2d(in_channels, deform_groups * kernel_size * kernel_size, kernel_size=kernel_size, stride=stride, padding=padding, bias=True)
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias)
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.deform_groups = deform_groups
def forward(self, x):
offset = self.offset_conv(x)
scale = self.scale_conv(x)
B, C, H, W = x.size()
kernel_size = self.kernel_size
stride = self.stride
padding = self.padding
dilation = self.dilation
groups = self.groups
deform_groups = self.deform_groups
# reshape offset and scale
offset = offset.view(B, deform_groups, 2 * kernel_size * kernel_size, H, W).contiguous()
scale = scale.view(B, deform_groups, kernel_size * kernel_size, H, W).contiguous()
# compute output
output = deform_conv2d(x, offset, scale, self.conv.weight, self.conv.bias, kernel_size, stride, padding, dilation, groups, deform_groups)
return output
def deform_conv2d(input, offset, scale, weight, bias=None, kernel_size=3, stride=1, padding=1, dilation=1, groups=1, deform_groups=1):
B, C, H, W = input.size()
out_channels, in_channels, kernel_h, kernel_w = weight.size()
assert in_channels % groups == 0
assert out_channels % groups == 0
out_h = (H + 2 * padding - dilation * (kernel_h - 1) - 1) // stride + 1
out_w = (W + 2 * padding - dilation * (kernel_w - 1) - 1) // stride + 1
# pad input and offset
input = F.pad(input, (padding, padding, padding, padding))
offset = F.pad(offset, (padding, padding, padding, padding))
# compute output
output = torch.zeros(B, out_channels, out_h, out_w, dtype=input.dtype, layout=input.layout, device=input.device)
deform_conv2d_cuda.deform_conv2d_cuda_forward(input, offset, scale, weight, bias, output, kernel_size, stride, padding, dilation, groups, deform_groups)
return output
```
这个代码实现了一个`DeformConv2d`类,该类继承自PyTorch的`nn.Module`类,并实现了一个可变形卷积层。其中`deform_conv2d`函数是实现可变形卷积操作的核心代码部分,使用CUDA实现了可变形卷积的前向传播过程。
阅读全文