对糖尿病数据集进行回归分析,其中数据集取自skearn中的datasets,python
时间: 2023-07-09 13:13:11 浏览: 162
糖尿病-数据集
好的,针对糖尿病数据集进行回归分析可以按照以下步骤进行:
1. 导入必要的库和数据集
```
from sklearn.datasets import load_diabetes
import pandas as pd
diabetes = load_diabetes()
df = pd.DataFrame(data=diabetes.data, columns=diabetes.feature_names)
df['target'] = diabetes.target
```
2. 数据预处理
```
from sklearn.model_selection import train_test_split
X = df.drop('target', axis=1)
y = df['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
```
3. 模型训练
```
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train, y_train)
```
4. 模型评估
```
from sklearn.metrics import mean_squared_error, r2_score
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print('MSE: ', mse)
print('R2: ', r2)
```
以上就是糖尿病数据集回归分析的基本流程,你可以根据需要进行进一步的调参和优化。
阅读全文