遗传算法货郎担算法代码
时间: 2023-10-05 17:09:42 浏览: 91
遗传算法代码
4星 · 用户满意度95%
以下是一个简单的遗传算法实现货郎担问题的代码:
```python
import random
# 城市坐标
CITIES = {"A": (0, 0), "B": (1, 5), "C": (5, 2), "D": (8, 3), "E": (6, 8)}
# 遗传算法参数
POPULATION_SIZE = 50
ELITISM_RATE = 0.1
MUTATION_RATE = 0.1
GENERATIONS = 100
# 计算两个城市之间的距离
def distance(city1, city2):
x1, y1 = CITIES[city1]
x2, y2 = CITIES[city2]
return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
# 生成一个随机的个体(城市排列)
def generate_individual():
cities = list(CITIES.keys())
random.shuffle(cities)
return cities
# 计算一个个体的适应度(路线总长度)
def fitness(individual):
return sum(distance(individual[i], individual[i+1]) for i in range(len(individual)-1)) + distance(individual[-1], individual[0])
# 选择下一代个体
def select(population):
elites_size = int(ELITISM_RATE * len(population))
elites = sorted(population, key=lambda x: fitness(x))[:elites_size]
parents = population[elites_size:]
total_fitness = sum(fitness(p) for p in parents)
probabilities = [fitness(p) / total_fitness for p in parents]
selected = []
for i in range(len(parents)):
selected.append(random.choices(parents, probabilities)[0])
return elites + selected
# 交叉两个个体,生成新的个体
def crossover(individual1, individual2):
start = random.randint(0, len(individual1) - 1)
end = random.randint(start, len(individual1) - 1)
child = individual1[start:end]
for city in individual2:
if city not in child:
child.append(city)
return child
# 变异一个个体
def mutate(individual):
if random.random() < MUTATION_RATE:
i = random.randint(0, len(individual) - 1)
j = random.randint(0, len(individual) - 1)
individual[i], individual[j] = individual[j], individual[i]
# 遗传算法主函数
def genetic_algorithm():
population = [generate_individual() for _ in range(POPULATION_SIZE)]
for _ in range(GENERATIONS):
population = select(population)
new_population = []
while len(new_population) < POPULATION_SIZE:
parent1, parent2 = random.sample(population, 2)
child = crossover(parent1, parent2)
mutate(child)
new_population.append(child)
population = new_population
best_individual = sorted(population, key=lambda x: fitness(x))[0]
return best_individual, fitness(best_individual)
# 测试遗传算法
best_individual, best_fitness = genetic_algorithm()
print(f"最短路线: {' -> '.join(best_individual)}")
print(f"总长度: {best_fitness}")
```
该代码使用遗传算法求解五个城市之间的最短路线,其中`CITIES`定义了五个城市的坐标,`POPULATION_SIZE`定义了每一代的个体数量,`ELITISM_RATE`定义了保留精英的比例,`MUTATION_RATE`定义了变异率,`GENERATIONS`定义了遗传算法的迭代次数。在`select`函数中,使用了轮盘赌选择算法来选择下一代个体;在`crossover`函数中,使用了部分映射交叉算法;在`mutate`函数中,使用了交换两个城市的位置的变异操作。
阅读全文