train_dataset = datasets.MNIST(root='D:\\dataset\\MNIST', train=True, download=True, transform=transform) train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size) test_dataset = datasets.MNIST(root='D:\\dataset\\MNIST', train=False, download=True, transform=transform) test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size) 怎么改变为.mat形式的输入
时间: 2024-02-09 14:12:40 浏览: 208
若要将MNIST数据集转换为.mat形式,则可以使用SciPy库中的`scipy.io.savemat()`函数。具体代码如下:
```python
import scipy.io as sio
import numpy as np
from torchvision import datasets, transforms
# 数据预处理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# 加载MNIST训练集和测试集
train_dataset = datasets.MNIST(root='D:\\dataset\\MNIST', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='D:\\dataset\\MNIST', train=False, download=True, transform=transform)
# 将MNIST训练集转换为.mat格式
train_data = train_dataset.data.numpy()
train_labels = train_dataset.targets.numpy()
sio.savemat('train_data.mat', {'train_data': train_data, 'train_labels': train_labels})
# 将MNIST测试集转换为.mat格式
test_data = test_dataset.data.numpy()
test_labels = test_dataset.targets.numpy()
sio.savemat('test_data.mat', {'test_data': test_data, 'test_labels': test_labels})
```
运行以上代码后,会生成`train_data.mat`和`test_data.mat`两个文件,分别包含MNIST训练集和测试集的图像数据和标签。
阅读全文