在pytorch框架yolov4中添加se模块
时间: 2024-02-06 08:12:53 浏览: 145
在PyTorch框架中,要在Yolov4中添加SE模块,可以按照以下步骤进行操作:
1. 导入必要的库和模块
```python
import torch
import torch.nn as nn
```
2. 定义SE模块
```python
class SEModule(nn.Module):
def __init__(self, in_channels, reduction=16):
super(SEModule, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(in_channels, in_channels // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(in_channels // reduction, in_channels, bias=False),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y
```
3. 在Yolov4中应用SE模块
在Yolov4网络的定义中,可以在每个卷积层之后添加SE模块。例如,在CSPDarknet53中,可以按照以下方式添加SE模块:
```python
class CSPBlock(nn.Module):
def __init__(self, in_channels, out_channels, num_blocks, use_se=True):
super(CSPBlock, self).__init__()
self.downsample_conv = ConvBlock(in_channels, out_channels, kernel_size=3, stride=2)
self.split_conv = ConvBlock(out_channels, out_channels, kernel_size=1, stride=1)
self.blocks_conv = nn.Sequential(*[ResidualBlock(out_channels, use_se=use_se) for _ in range(num_blocks)])
self.concat_conv = ConvBlock(out_channels * 2, out_channels, kernel_size=1, stride=1)
def forward(self, x):
x = self.downsample_conv(x)
x = torch.split(x, x.shape[1] // 2, dim=1)
x = self.split_conv(x[0]), self.blocks_conv(x[1])
x = torch.cat(x, dim=1)
return self.concat_conv(x)
```
在ResidualBlock中,也可以添加SE模块:
```python
class ResidualBlock(nn.Module):
def __init__(self, channels, use_se=True):
super(ResidualBlock, self).__init__()
self.conv1 = ConvBlock(channels, channels // 2, kernel_size=1, stride=1)
self.conv2 = ConvBlock(channels // 2, channels, kernel_size=3, stride=1)
if use_se:
self.se = SEModule(channels)
else:
self.se = None
def forward(self, x):
residual = x
x = self.conv1(x)
x = self.conv2(x)
if self.se is not None:
x = self.se(x)
x += residual
return x
```
通过以上操作,就可以在Yolov4中添加SE模块了。
阅读全文