pytorch框架下基于小波散射网络的ECG分类模型python代码怎么写,假设信号数量为1000个, 每个信号片段长度为1024采样点
时间: 2024-04-18 13:31:47 浏览: 170
小波神经网络的时间序列预测代码,基于神经网络的时间序列预测,Python
5星 · 资源好评率100%
下面是一个基于小波散射网络的ECG分类模型的简化示例代码,使用PyTorch框架编写。在这个示例中,我们使用了ECG5000数据集进行演示。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader, TensorDataset
# 定义小波散射网络模型
class ScatteringModel(nn.Module):
def __init__(self):
super(ScatteringModel, self).__init__()
self.scattering = Scattering1D(J=2, shape=(1024,))
def forward(self, x):
x = self.scattering(x)
return x
# 加载数据集并进行预处理
# 这里假设数据集已经准备好,包括信号和对应的标签
data = np.load('ecg_data.npy')
labels = np.load('ecg_labels.npy')
# 将数据集分割为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=42)
# 将数据转换为Tensor类型,并创建数据加载器
train_dataset = TensorDataset(torch.from_numpy(X_train).float(), torch.from_numpy(y_train).long())
test_dataset = TensorDataset(torch.from_numpy(X_test).float(), torch.from_numpy(y_test).long())
batch_size = 32
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 创建模型实例和优化器
model = ScatteringModel()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 定义损失函数
criterion = nn.CrossEntropyLoss()
# 训练模型
num_epochs = 10
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
for epoch in range(num_epochs):
model.train()
train_loss = 0.0
for inputs, labels in train_loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item() * inputs.size(0)
train_loss /= len(train_loader.dataset)
# 在测试集上评估模型
model.eval()
test_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in test_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
test_loss += loss.item() * inputs.size(0)
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100 * correct / total
# 打印每个epoch的训练损失、测试损失和准确率
print(f'Epoch {epoch+1}/{num_epochs}, Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}, Accuracy: {accuracy:.2f}%')
```
请注意,上述代码仅提供了一个基本的示例,实际应用中可能需要根据数据集和模型的具体情况进行适当的修改和调整。另外,还需要根据具体任务选择合适的优化器、调整超参数,并进行必要的模型评估和调优。
阅读全文